Biological organisms have evolved tremendous control over the synthesis of inorganic materials in aqueous solutions at standard conditions. Such control over material properties is difficult to achieve with current synthesis strategies. Biotemplated synthesis of materials has been demonstrated to be efficient at facilitating the formation of various inorganic species. In this study, we employ a protein cage-based system to synthesize photoactive TiO2 nanoparticles less than 10 nm in diameter. We also demonstrate phase control over the material, with the ability to synthesize both anatase and rutile TiO2 using distinct biomineralization peptides within the protein cage. Finally, using analytical ultracentrifugation, we are able to resolve distinct reaction products and approximate their loading. We find that two distinct species comprise the reaction products, likely representing procapsid-like particles with early, precursor metal oxide clusters, and shells nearly full with crystalline TiO2 nanoparticles, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm501443e | DOI Listing |
Biomimetics (Basel)
November 2024
Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.
View Article and Find Full Text PDFSci Adv
December 2024
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden.
Coupling biology with electronics is emerging as a transformative approach in developing advanced medical treatments, with examples ranging from implants for treating neurological disorders to biosensors for real-time monitoring of physiological parameters. The electrodes used for these purposes often face challenges such as signal degradation due to biofouling and limited biocompatibility, which can lead to inaccurate readings and tissue damage over time. Conducting organic polymers are a promising alternative because of their mechanical, chemical, and physical properties, which better match the ones of biological systems.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
ACS Omega
October 2024
Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA 40110-060, Brazil.
In this paper, filamentous fungi have been used as biotemplates to integrate gold nanoparticles (Au-NPs) into the cell wall. A new chemical mechanism has been proposed to elucidate the assimilation of Au-NPs by fungi, considering the ionic current that arises in the function of fungal metabolism. After biological components were eliminated, mycelium-like gold microtubes have been obtained using different fungal species as precursors.
View Article and Find Full Text PDFNanoscale Adv
September 2024
Department of Mechanical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology Kumasi Ghana
Carbon black, a nano-porous material usually derived from the pyrolysis of waste tyres possesses varied particle sizes and morphology making it a viable material for several engineering applications. However, the high tendency for CB to agglomerate remains a challenge. To address this, bio-templating has been employed to produce a nanostructured porous carbon electrode material for supercapacitor applications using diatomite as a template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!