Ionic sulfophosphate liquids of the type ZnO-Na2O-Na2SO4-P2O5 exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties. Increasing manganese levels are found to result in a monotonic increase of the transition temperature Tg and most of the mechanical properties. This trend is attributed to the change of metal-ion coordination from four-fold around Zn(2+) to six-fold around Mn(2+) ions. The higher coordination facilitates cross-linking of the ionic structural entities and subsequently increases Tg. Raman and infrared spectroscopy show that the structure of these glasses involves only SO4(2-) and PO4 (3-) monomers as well as P2O7(4-) dimers. Replacement of ZnO by MnO is found to favour PO4(3-) over P2O7(4-) species, a trend which is enhanced by co-doping with FeO. Both transition metal ions show, like Zn(2+), a preference to selectively coordinate to phosphate anionic species, as opposed to sodium ions which coordinate mainly to sulfate anions. EPR spectroscopy finally shows that divalent Mn(2+) ions are present primarily in MnO6-clusters, which, in the studied sulfophosphate glasses, convert upon increasing MnO content from corner-sharing to edge-sharing entities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4903191DOI Listing

Publication Analysis

Top Keywords

ionic sulfophosphate
8
sulfophosphate glasses
8
transition metal
8
metal ions
8
replacement zno
8
zno mno
8
mn2+ ions
8
ions
6
partitioning structural
4
structural role
4

Similar Publications

Given the ubiquity of glass formulations that are functionalized with silver compounds, the electronic interaction between isolated silver cations and the glass network deserves more attention. Here, we report the structural origin of the optical properties that result from silver doping in fluorophosphate (PF) and sulfophosphate (PS) glasses. To achieve this, solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) are combined with optical spectroscopic analysis and physical property measurements.

View Article and Find Full Text PDF

Ionic sulfophosphate liquids of the type ZnO-Na2O-Na2SO4-P2O5 exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties.

View Article and Find Full Text PDF

Low-melting ionic sulfophosphate glasses from the system P2O5-SO4-MO-Na2O (M = Zn(2+), Ca(2+) or Mg(2+)) have been previously shown by us to allow tuneable aqueous dissolution and also enable processing temperatures well below 400°C. Sulfate ions are extremely safe for use in the body as decades of use of calcium sulfate bone grafts testifies and there is no known limit on their adult oral toxicity. This glass system therefore offers great potential for use as biomaterials, especially in organic-inorganic hybrid systems such as glass-polymer composites for tissue engineering or drug encapsulation and delivery applications.

View Article and Find Full Text PDF

We report on intense red fluorescence from Mn(2+)-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na(2)O-SO(3)-P(2)O(5). As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO(3)-rich phase. Crystal formation is then confined to the relict structure of phase separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!