On readout of vibrational qubits using quantum beats.

J Chem Phys

Chemistry Department, Marquette University, Milwaukee, Wisconsin 53201, USA.

Published: December 2014

Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2-5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl2, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. The resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4903055DOI Listing

Publication Analysis

Top Keywords

quantum beat
16
vibrational qubits
12
quantum beats
12
phase error
12
readout vibrational
8
quantum
8
readout state
8
fitting quantum
8
beat signal
8
analytical expression
8

Similar Publications

Two-dimensional electronic spectroscopy (2DES) has high spectral resolution and is a useful tool for studying atomic dynamics. In this paper, we show a smallest unit of electromagnetically induced transparency (EIT) for 2DES, i.e.

View Article and Find Full Text PDF

Vibronic coherent quantum beat in four-layer platinum carbonyl cluster.

J Chem Phys

November 2024

College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People's Republic of China.

Vibronic coherence has been studied for years, but direct comparisons between the rich experimental features and theory remain rare. In this work, we investigate the vibronic coherent quantum beat of a four-layer platinum carbonyl cluster [Pt3(CO)6]42- in a solution utilizing femtosecond vis-pump/vis-probe transient absorption spectroscopy. By varying the excitational wavelength, quantum beats coupled to either the electronic ground state or the excited state are selectively prepared.

View Article and Find Full Text PDF

Revealing and Manipulating Hidden Fine-Structure Coherence of Bright Excitons in CsPbI Perovskite Quantum Dots.

Nano Lett

November 2024

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.

Observation and understanding of fine-structure splitting of bright excitons in lead halide perovskite quantum dots (QDs) are crucial to their emerging applications in quantum light sources and exciton coherence manipulation. Recent studies demonstrate that ensemble-level polarization-resolved transient absorption spectroscopy can reveal the quantum beats arising from the coherence between two fine-structure levels. Here we report the observation of an extra fine-structure quantum coherence hidden in previous studies by using cryo-magnetic quantum beat spectroscopy.

View Article and Find Full Text PDF

Quadrupole Coupling of Circular Rydberg Qubits to Inner Shell Excitations.

Phys Rev Lett

September 2024

5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Article Synopsis
  • Divalent atoms have potential for improved control in quantum simulation and computing due to a second valence electron, with circular Rydberg atoms being especially promising for avoiding autoionization.
  • A specific experiment used electric quadrupole coupling between a metastable 4D_{3/2} level and a high-n circular Rydberg qubit in ^{88}Sr atoms, measuring a small differential level shift with advanced interferometry techniques.
  • The study demonstrated effective qubit coherence maintenance despite continuous photon scattering, opening new avenues for laser cooling and further manipulation of Rydberg atoms in quantum computing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!