A five-dimensional potential energy surface (PES) for the interaction of a rigid methane molecule with a rigid nitrogen molecule was determined from quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the CCSD(T) level of theory was utilized to compute a total of 743 points on the PES. The interaction energies were calculated using basis sets of up to quadruple-zeta quality with bond functions and were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites for methane and five sites for nitrogen was fitted to the interaction energies. The PES was validated by calculating the cross second virial coefficient as well as the shear viscosity and binary diffusion coefficient in the dilute-gas limit for CH4-N2 mixtures. An improved PES was obtained by adjusting a single parameter of the analytical potential function in such a way that quantitative agreement with the most accurate experimental values of the cross second virial coefficient was achieved. The transport property values obtained with the adjusted PES are in good agreement with the best experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4902807 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
Beijing University of Chemical Technology, State Key Laboratory of Chemical Resource Engineering, CHINA.
Incompatible electrode/electrolyte interface often leads to dendrite growth, parasitic reactions and corrosion, posing significant challenges to the application of Zn anodes. Herein, we introduce a biomimetic antifreeze protein localized gel electrolyte (ALGE) with multifunctional capabilities to address these issues by combining electrolyte modification with interface optimization. ALGE modifies the Zn2+ solvation structure and the hydrogen-bond network adjacent to zinc anode, effectively suppressing hydrogen evolution.
View Article and Find Full Text PDFJ Phys Chem A
March 2025
State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Identifying atomic-level mechanisms in elemental chemical reactions is crucial for understanding complex reaction processes. This study focuses on the typical multichannel H + NHCl reaction, which plays a significant role in environmental science. High-level ab initio calculations determined seven distinct reaction pathways, leading to three product channels: H + NHCl, HCl + NH, and Cl + NH.
View Article and Find Full Text PDFLangmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India. Electronic address:
Background: Cancer remains an awful challenge, despite years of targeting proteins to control its relentless growth and spread. Fungal metabolites, a treasure of natural chemicals, offer a glimmer of hope. Telomeres, the cellular "caps," are a focal point in cancer research.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Department of Dermatovenereology, Kazakhstan Medical University, Almaty, Kazakhstan, 050016. Electronic address:
Astrovirus MLB1 (HAstV-MLB1) is non-enveloped RNA virus that cause acute gastroenteritis infection. Despite research progress about infection and pathogenesis of HAstV-MLB1, Currently, no vaccine has been developed to effectively combat this pathogen. The current study is based on immunoinformatics and reverse vaccinology approaches to design next-generation, multi-epitope-based vaccine models against HAstV-MLB1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!