Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

Evolution

Structure and Motion Laboratory, Royal Veterinary College, Hatfield, Hertfordshire AL97TA, United Kingdom.

Published: February 2015

Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12576DOI Listing

Publication Analysis

Top Keywords

locomotor strategies
12
wings versus
8
versus legs
8
development evolution
8
insects birds
8
wings legs
8
wing versus
8
versus leg
8
leg investment
8
investment performance
8

Similar Publications

Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).

View Article and Find Full Text PDF

Schizophrenia is a chronic and severe mental disorder. It is currently treated with antipsychotic drugs (APD). However, APD's work only in a limited number of patients and may have cognition impairing side effects.

View Article and Find Full Text PDF

Research over the past 20 years indicates the amount of task-specific walking practice provided to individuals with stroke, brain injury, or incomplete spinal cord injury can strongly influence walking recovery. However, more recent data suggest that attention towards 2 other training parameters, including the intensity and variability of walking practice, may maximize walking recovery and facilitate gains in non-walking outcomes. The combination of these training parameters represents a stark contrast from traditional strategies, and confusion regarding the potential benefits and perceived risks may limit their implementation in clinical practice.

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

From Cell to Organ: Exploring the Toxicological Correlation of Organophosphorus Compounds in Living System.

Toxicology

January 2025

Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:

Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!