A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living. | LitMetric

Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.

Med Sci Sports Exerc

1Human Performance Laboratory, Ball State University, Muncie, IN; 2Department of Kinesiology, Michigan State University, East Lansing, MI; and 3Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI.

Published: August 2015

Purpose: The purpose of this study was to develop, validate, and compare energy expenditure (EE) prediction models for accelerometers placed on the hip, thigh, and wrists using simple accelerometer features as input variables in EE prediction models.

Methods: Forty-four healthy adults participated in a 90-min, semistructured, simulated free-living activity protocol. During the protocol, participants engaged in 14 different sedentary, ambulatory, lifestyle, and exercise activities for 3-10 min each. Participants chose the order, duration, and intensity of activities. Four accelerometers were worn (right hip, right thigh, as well as right and left wrists) to predict EE compared with that measured by the criterion measure (portable metabolic analyzer). Artificial neural networks (ANNs) were created to predict EE from each accelerometer using a leave-one-out cross-validation approach. Accuracy of the ANN was evaluated using Pearson correlations, root mean square error, and bias. Several ANNs were developed using different input features to determine those most relevant for use in the models.

Results: The ANNs for all four accelerometers achieved high measurement accuracy, with correlations of r > 0.80 for predicting EE. The thigh accelerometer provided the highest overall accuracy (r = 0.90) and lowest root mean square error (1.04 METs), and the differences between the thigh and the other monitors were more pronounced when fewer input variables were used in the predictive models. None of the predictive models had an overall bias for prediction of EE.

Conclusions: A single accelerometer placed on the thigh provided the highest accuracy for EE prediction, although monitors worn on the wrists or hip can also be used with high measurement accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000000597DOI Listing

Publication Analysis

Top Keywords

energy expenditure
8
expenditure prediction
8
hip thigh
8
input variables
8
root square
8
square error
8
high measurement
8
measurement accuracy
8
provided highest
8
highest accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!