Tunable Charge and Spin Order in PrNiO_{3} Thin Films and Superlattices.

Phys Rev Lett

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany.

Published: November 2014

We use polarized Raman scattering to probe lattice vibrations and charge ordering in 12 nm thick, epitaxially strained PrNiO_{3} films, and in superlattices of PrNiO_{3} with the band insulator PrAlO_{3}. A carefully adjusted confocal geometry is used to eliminate the substrate contribution to the Raman spectra. In films and superlattices under tensile strain which undergo a metal-insulator transition upon cooling, the Raman spectra reveal phonon modes characteristic of charge ordering. These anomalous phonons do not appear in compressively strained films, which remain metallic at all temperatures. For superlattices under compressive strain, the Raman spectra show no evidence of anomalous phonons indicative of charge ordering, while complementary resonant x-ray scattering experiments reveal antiferromagnetic order associated with a modest increase in resistivity upon cooling. This confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.227206DOI Listing

Publication Analysis

Top Keywords

films superlattices
12
charge ordering
12
raman spectra
12
anomalous phonons
8
tunable charge
4
charge spin
4
spin order
4
order prnio_{3}
4
prnio_{3} thin
4
films
4

Similar Publications

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

ACS Nano

January 2025

Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.

View Article and Find Full Text PDF

The First Decade of Colloidal Lead Halide Perovskite Quantum Dots (in our Laboratory).

Chimia (Aarau)

December 2024

Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zürich.

Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence.

View Article and Find Full Text PDF

Liquid/Liquid Interfacial Assembly of Poly(methyl methacrylate)-Grafted Nanoparticles into Superlattice Monolayers and Their Application as Floating Gates for High Performance Memory.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

Polymer/gold nanoparticle (AuNP) composites have been utilized as floating gates to enhance the performance of memory devices. However, these devices typically exhibit a low ON/OFF drain current ratio (/) and unstable charge trapping, attributed to the poorly defined arrangement of AuNPs within the composite floating gate. To address these limitations, this study employs poly(methyl methacrylate)-grafted AuNPs (Au@PMMA) as building blocks for the fabrication of monolayered superlattice films with a highly ordered structure via liquid/liquid interfacial assembly.

View Article and Find Full Text PDF

Thin-film deposition using sustainable precursors is required for various next-generation green energy applications. Here we report two atomic/molecular layer deposition processes for appreciably stable and conformal Ti-organic thin films and TiO:organic superlattices with potential in battery, photocatalysis and thermoelectric applications. These processes are based on the safe and sustainable titanium isopropoxide as the titanium precursor.

View Article and Find Full Text PDF

Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!