We ask whether the eigenstate thermalization hypothesis (ETH) is valid in a strong sense: in the limit of an infinite system, every eigenstate is thermal. We examine expectation values of few-body operators in highly excited many-body eigenstates and search for "outliers," the eigenstates that deviate the most from ETH. We use exact diagonalization of two one-dimensional nonintegrable models: a quantum Ising chain with transverse and longitudinal fields, and hard-core bosons at half-filling with nearest- and next-nearest-neighbor hopping and interaction. We show that even the most extreme outliers appear to obey ETH as the system size increases and thus provide numerical evidences that support ETH in this strong sense. Finally, periodically driving the Ising Hamiltonian, we show that the eigenstates of the corresponding Floquet operator obey ETH even more closely. We attribute this better thermalization to removing the constraint of conservation of the total energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.90.052105 | DOI Listing |
Entropy (Basel)
November 2024
Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
View Article and Find Full Text PDFRep Prog Phys
November 2024
Marian Smoluchowski Institute of Physics, Jagiellonian University in Kraków, ul Lojasiewicza 11, Krakow, 31-007, POLAND.
Phys Rev Lett
November 2024
Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, Łojasiewicza 11, PL-30-348 Kraków, Poland.
Many-body localization (MBL) hinders the thermalization of quantum many-body systems in the presence of strong disorder. In this Letter, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain, finding the multimodal distribution of entanglement entropy in eigenstates, sub-Poissonian level statistics, and revealing a relation between operators and initial states required for examining the breakdown of thermalization in the time evolution of the system. We employ a real space renormalization group scheme to identify these phenomenological features of the MBL regime that extend beyond the standard picture of local integrals of motion relevant for systems with disorder coupled to on-site operators.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria.
Quantum scars are special eigenstates of many-body systems that evade thermalization. They were first discovered in the PXP model, a well-known effective description of Rydberg atom arrays. Despite significant theoretical efforts, the fundamental origin of PXP scars remains elusive.
View Article and Find Full Text PDFPhys Rev E
October 2024
Center for Quantum Technologies, Department of Physics, St. Kliment Ohridski University of Sofia, James Bourchier 5 Boulevard, 1164 Sofia, Bulgaria.
We investigate the onset of quantum thermalization in a system governed by the Jahn-Teller Hamiltonian, which describes the interaction between a single spin and two bosonic modes. We find that the Jahn-Teller model exhibits a finite-size quantum phase transition between the normal phase and two types of super-radiant phase when the ratios of spin-level splitting to each of the two bosonic frequencies grow to infinity. We test the prediction of the eigenstate thermalization hypothesis in the Jahn-Teller model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!