Mixed, charge and heat noises in thermoelectric nanosystems.

J Phys Condens Matter

Aix Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille, France.

Published: January 2015

Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/27/1/015302DOI Listing

Publication Analysis

Top Keywords

charge heat
12
differential conductances
12
mixed charge
8
heat noises
8
connected reservoirs
8
reservoirs linear
8
linear response
8
response regime
8
quantum dot
8
noises
6

Similar Publications

Lanthanide materials with a 4f electron configuration (S) offer an exciting system for realizing multiple addressable spin states for qubit design. While the S ground state of 4f free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu attractive as it mirrors Gd in exhibiting the S ground state, capable of seven spin-allowed transitions.

View Article and Find Full Text PDF

Advanced adiabatic compressed air energy storage systems dynamic modelling: Impact of the heat storage device.

Heliyon

January 2025

IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852, Rueil-Malmaison, France.

Advanced Adiabatic Compressed Air Energy Storage (AACAES) is a technology for storing energy in thermomechanical form. This technology involves several equipment such as compressors, turbines, heat storage capacities, air coolers, caverns, etc. During charging or discharging, the heat storage and especially the cavern will induce transient behavior of operating points, notably temperature, pressure, and volume flow.

View Article and Find Full Text PDF

Restoration and artificial reefs can assist the recovery of degraded reefs but are limited in scalability and climate resilience. The Mineral Accretion Technique (MAT) subjects metal artificial reefs to a low-voltage electrical current, thereby creating a calcium-carbonate coating. It has been suggested that corals on MAT structures experience enhanced health and growth.

View Article and Find Full Text PDF

The ion drag pump, as one kind of electrohydrodynamic pump, has received considerable attention in fluid applications due to its excellent pumping flow rate and pressure. However, there is a lack of systematic research about the factors that influence pumping performance of the ion drag pump. Here, a photo-induced ion drag pump based on the PLZT ceramic is proposed by combining the photoelectric effect and field emission phenomenon.

View Article and Find Full Text PDF

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!