Background: Blood parasites of the genus Karyolysus Labbé, 1894 (Apicomplexa: Adeleida: Karyolysidae) represent the protozoan haemogregarines found in various genera of lizards, including Lacerta, Podarcis, Darevskia (Lacertidae) and Mabouia (Scincidae). The vectors of parasites are gamasid mites from the genus Ophionyssus.

Methods: A total of 557 individuals of lacertid lizards were captured in four different localities in Europe (Hungary, Poland, Romania and Slovakia) and blood was collected. Samples were examined using both microscopic and molecular methods, and phylogenetic relationships of all isolates of Karyolysus sp. were assessed for the first time. Karyolysus sp. 18S rRNA isolates were evaluated using Bayesian and Maximum Likelihood analyses.

Results: A total of 520 blood smears were examined microscopically and unicellular protozoan parasites were found in 116 samples (22.3% prevalence). The presence of two Karyolysus species, K. latus and K. lacazei was identified. In total, of 210 samples tested by polymerase chain reaction (PCR), the presence of parasites was observed in 64 individuals (prevalence 30.5%). Results of phylogenetic analyses revealed the existence of four haplotypes, all part of the same lineage, with other parasites identified as belonging to the genus Hepatozoon.

Conclusions: Classification of these parasites using current taxonomy is complex - they were identified in both mites and ticks that typically are considered to host Karyolysus and Hepatozoon respectively. Furthermore although distortions to the intermediate host erythrocyte nuclei were observed, the defining characteristic of Karyolysus, the haplotypes were nearly identical to those reported from lizards in the Iberian Peninsula, where such distortions were not reported and which were thus identified as Hepatozoon. Based on the phylogenetic analyses, neither vertebrate host, nor geographical patterns of the studied blood parasites could be established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298996PMC
http://dx.doi.org/10.1186/s13071-014-0555-xDOI Listing

Publication Analysis

Top Keywords

blood parasites
8
phylogenetic analyses
8
parasites
7
karyolysus
6
morphological molecular
4
molecular characterization
4
characterization karyolysus--a
4
karyolysus--a neglected
4
neglected common
4
common parasite
4

Similar Publications

Leishmaniases affect millions of people around the world, caused by Leishmania parasites. Leishmania are transmitted by female sandflies from Phlebotominae subfamily during their blood meals. In mammals, promastigotes are phagocytosed mainly by macrophages, differentiate into amastigotes and multiply.

View Article and Find Full Text PDF

Background: Infectious disease agents pose significant threats to humans, wildlife, and livestock, with rodents carrying a third of these agents, many linked to human diseases. However, the range of pathogens in rodents and the hotspots for disease remain poorly understood.

Aim: This study evaluated the prevalence of viral, bacterial, and parasitic pathogens in rodents in riverine and non-riverine areas in selected districts in Zambia.

View Article and Find Full Text PDF

Avian coccidiosis is one of the many disorders that seriously harm birds' digestive systems. Nowadays the light is shed on using Phytochemical/herbal medicines as alternative natural anti-coccidial chemical-free standards. Consequently, this study aimed to investigate the impact of lawsonia inermis powder (LIP), and Acacia nilotica aqueous extract (ANAE), on growth performance, serum biochemical, antioxidant status, cytokine biomarkers, total oocyst count and intestinal histopathology of broiler chickens challenged with coccidiosis.

View Article and Find Full Text PDF

Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion.

PLoS Negl Trop Dis

January 2025

Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.

Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.

View Article and Find Full Text PDF

The use of laboratory mice with a natural microbiome, such as "Wildling mice", offers a promising research tool for both basic and applied science due to their close resemblance to the human superorganism. However, the breeding and maintenance of these mice, which harbor a diverse microbiome including bacteria, viruses, and parasites, pose significant challenges for animal husbandry facilities at research institutions. To address these challenges, a specialized facility concept was developed for housing "Wildling mice" at Charité - Universitätsmedizin Berlin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!