Carbohydrates and their derivatives play important roles in biological systems, but their isomeric heterogeneity also presents a considerable challenge for analytical techniques. Here, a stepwise approach using infrared multiple-photon dissociation (IRMPD) via a tunable CO2 laser (9.2-10.7 μm) was employed to characterize isomeric variants of glucose-based trisaccharides. After the deprotonated trisaccharides were trapped and fragmented to disaccharide C2 fragments in a Fourier transform ion cyclotron resonance (FTICR) cell, a further variable-wavelength infrared irradiation of the C2 ion produced wavelength-dependent dissociation patterns that are represented as heat maps. The photodissociation patterns of these C2 fragments are shown to be strikingly similar to the photodissociation patterns of disaccharides with identical glycosidic bonds. Conversely, the photodissociation patterns of different glycosidic linkages exhibit considerable differences. On the basis of these results, the linkage position and anomericity of glycosidic bonds of disaccharide units in trisaccharides can be systematically differentiated and identified, providing a promising approach to characterize the structures of isomeric oligosaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-014-1025-6DOI Listing

Publication Analysis

Top Keywords

photodissociation patterns
12
variable-wavelength infrared
8
glycosidic bonds
8
linkage anomeric
4
anomeric differentiation
4
trisaccharides
4
differentiation trisaccharides
4
trisaccharides sequential
4
sequential fragmentation
4
fragmentation variable-wavelength
4

Similar Publications

Photodissociation of the CH2Cl radical: A high-level ab initio study.

J Chem Phys

December 2024

Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.

Photodissociation of the CH2Cl radical is investigated by using high-level multireference configuration interaction ab initio methods, including the spin-orbit coupling. All possible fragmentation pathways, namely, CH2Cl + hν → CH2 + Cl, HCCl + H, and CCl + H2, have been analyzed. The potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated.

View Article and Find Full Text PDF

Using trianisole heptazine (TAHz) as a monomeric analogue for carbon nitride, we performed ultrafast pump-photolysis-probe transient absorption (TA) spectroscopy on the intermediate TAHzH heptazinyl radical produced from an excited state PCET reaction with 4-methoxyphenol (MeOPhOH). Our results demonstrate an optically gated photolysis that releases H and regenerates ground state TAHz. The TAHzH radical signature at 520 nm had a lifetime of 7.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding the complex patterns of -glycosylation in mucin domain proteins, which are important in diseases like cancer.
  • Researchers are developing new methods to analyze these glycoproteins due to the difficulties presented by their diverse glycosylation structures.
  • They combine the use of a targeted protease and ultraviolet photodissociation mass spectrometry to identify and map glycoforms of proteins like TIM-1, MUC-1, and MUC-16, further revealing glycosylation trends in these proteins.
View Article and Find Full Text PDF

A series of fluorophores based on the (5-methyl-4-phenylthiazol-2-yl)-3-phenylacrylonitrile (MPTA) core were designed and synthesised for photocaging of amino acids and peptides. The photophysical characteristics of these compounds and their hybrids with biomolecules were thoroughly investigated through a joint experimental, spectral and computational approach. The photorelease ability of the obtained amino acids-MPTA and peptides-MPTA hybrids was studied under various conditions, including different UV irradiation wavelength and power, and solvents.

View Article and Find Full Text PDF

Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!