The gene encoding uridine diphosphate glucuronosyltransferase (UGT) 1A4 shows considerable polymorphism. Several common drugs are metabolised by UGT1A4, among them lamotrigine (LTG). Experimental and clinical studies suggest that certain variants of UGT1A4 are associated with altered enzyme activity. However, results are conflicting. This clinical study aimed to investigate the frequencies of two common UGT1A4 variants, *2 (P24T) and *3 (L48V), and their potential effects on serum concentrations of LTG. The *2 variant was associated with a trend towards higher serum concentrations, while the *3 variant was associated with significantly lower serum concentrations of LTG. The calculated allele frequencies were in the same range as in earlier studies on Caucasian populations. To our knowledge, this is the first study suggesting a clinical effect of UGT1A4*2. Further study is needed to confirm this finding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13318-014-0247-0 | DOI Listing |
Environ Res
January 2025
Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient Data Explorative Network, Odense, Denmark.
Background: Over the past decade, the use of organophosphate insecticides including chlorpyrifos has faced increasing restrictions due to health concerns, leading to a rise in use of pyrethroids. Concerns about neurodevelopmental insults following pyrethroids exposure exist, but few studies have examined the long-term effects of childhood exposure to chlorpyrifos and pyrethroids on IQ.
Objective: To investigate the prospective associations between pyrethroids and chlorpyrifos exposure at age 5 years and IQ scores assessed at age 7.
J Affect Disord
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA. Electronic address:
Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
Serum uric acid is an end-product of purine metabolism. Uric acid concentrations in excess of the physiological range may lead to diseases such as gout, cardiovascular disease, and kidney injury. The kidney includes a variety of cell types with specialized functions such as fluid and electrolyte homeostasis, detoxification, and endocrine functions.
View Article and Find Full Text PDFIn this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 45363, Indonesia.
Background: Certain micronutrient levels have been associated with the risk of developing TB disease. We explored the possible association of selected at-risk micronutrient levels with the development of Mycobacterium tuberculosis (M.tb) infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!