The endosperm plays a pivotal role in the integration between component tissues of molecular signals controlling seed development. It has been shown to participate in the regulation of embryo morphogenesis and ultimately seed size determination. However, the molecular mechanisms that modulate seed size are still poorly understood especially in legumes. DASH (DOF Acting in Seed embryogenesis and Hormone accumulation) is a DOF transcription factor (TF) expressed during embryogenesis in the chalazal endosperm of the Medicago truncatula seed. Phenotypic characterization of three independent dash mutant alleles revealed a role for this TF in the prevention of early seed abortion and the determination of final seed size. Strong loss-of-function alleles cause severe defects in endosperm development and lead to embryo growth arrest at the globular stage. Transcriptomic analysis of dash pods versus wild-type (WT) pods revealed major transcriptional changes and highlighted genes that are involved in auxin transport and perception as mainly under-expressed in dash mutant pods. Interestingly, the exogenous application of auxin alleviated the seed-lethal phenotype, whereas hormonal dosage revealed a much higher auxin content in dash pods compared with WT. Together these results suggested that auxin transport/signaling may be affected in the dash mutant and that aberrant auxin distribution may contribute to the defect in embryogenesis resulting in the final seed size phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329604PMC
http://dx.doi.org/10.1111/tpj.12742DOI Listing

Publication Analysis

Top Keywords

seed size
20
dash mutant
12
seed
9
transcription factor
8
medicago truncatula
8
truncatula seed
8
embryo morphogenesis
8
final seed
8
dash pods
8
dash
7

Similar Publications

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

α-Synuclein interaction with POPC/POPS vesicles.

Soft Matter

January 2025

Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.

We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.

View Article and Find Full Text PDF

In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.

View Article and Find Full Text PDF

Long Cycle Life All-Solid-State Batteries Enabled by Medium Nanosized Catholytes.

J Phys Chem Lett

January 2025

School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED) and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Poor interfacial contact in a solid-state cathode is a major challenge in the development of high specific energy and long cycle life all-solid-state batteries (ASSBs). Herein, the influence of catholyte size on the electrochemical performance of ASSBs is inspected, and the size of LiPSCl (LPSCl) catholyte is tuned for optimizing the ionic conduction and active material utilization in cathode. A medium nanosized LPSCl catholyte not only forms fast ionic transport network throughout the cathode but also provides high specific interfacial area to alleviate the electrochemo-mechanical coupling effect and thus benefits comprehensive improvement of electrochemical performance in ASSBs.

View Article and Find Full Text PDF

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!