Background: Streptomyces griseorubens JSD-1 is a novel actinomycete isolated from soil that can utilize nitrate as its sole nitrogen source for growth and these nitrate assimilation genes active in this biotransformation are expected to be crucial. However, little is known about its genomic or genetic background related to nitrogen metabolism in this isolate. Thus, this study concentrates on identification and characterization of genes involved in nitrate assimilation.
Results: To investigate the molecular mechanism of nitrate metabolism, genome sequencing was performed by Illumina Miseq platform. Then the draft genome of a single linear chromosome with 8,463,223 bp and an average G+C content of 72.42% was obtained, which has been deposited at GenBank under the accession number JJMG00000000. Sequences of nitrate assimilation proteins such as nitrate reductase (EC 1.7.99.4), nitrite reductase (EC 1.7.1.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.1.13) and glutamate dehydrogenase (EC 1.4.1.2) were acquired. All proteins were predicted to be intracellular enzymes and their sequences were highly identical to those from their similar species owing to the conservative character. Putative 3D structures of these proteins were also modeled based on the templates with the most identities in the PDB database. Through KEGG annotated map, these proteins proved to be located on the key positions of nitrogen metabolic signaling pathway. Finally, quantitative RT-PCR indicated that expression responses of all genes were up-regulated generally and significantly when stimulated with nitrate.
Conclusion: In this manuscript, we describe the genome features of an isolate of S. griseorubens JSD-1 following with identification and characterization of these nitrate assimilation proteins such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase accounts for the ability to utilize nitrate as its sole nitrogen source for growth through cellular localization, multiple sequence alignment, putative 3D modeling and quantitative RT-PCR. In summary, our findings provide the genomic and genetic background of utilizing nitrate of this strain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272520 | PMC |
http://dx.doi.org/10.1186/s12934-014-0174-4 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Educatio, Guizhou University, Guiyang 550025 Guizhou Province, China.
Actinomycetes are essential for sustaining the ecosystem's nitrogen balance and stimulating plant development. In contrast, existing detection and culture techniques for actinomycetes are still limited, making it difficult to fully assess their role in the nitrogen cycle. This review emphasized the advantages of actinomycetes in ecological restoration, outlined the current status and challenges of research on nitrogen cycling by actinomycetes.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, 3460000, Chile.
In the present study, the taxonomic position of Salinisphaera halophila (NZ_AYKF00000000) and Salinisphaera orenii (NZ_AYKH00000000) was re-evaluated. In addition, their metabolic potentials and mechanisms for mitigating stress conditions were determined. Comparisons of 16S rRNA gene sequences, analysis of the phylogenetic tree, phylogenomic tree, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values were conducted.
View Article and Find Full Text PDFFront Microbiol
January 2025
Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.
Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!