miRNA-1 (miR-1) and miRNA-133a (miR-133a) are muscle-specific miRNAs that play an important role in heart development and physiopathology. Although both miRNAs have been broadly studied during cardiogenesis, the mechanisms by which miR-1 and miR-133a could influence linage commitment in pluripotent stem cells remain poorly characterized. In this study we analysed the regulation of miR-1 and miR-133a expression during pluripotent stem cell differentiation [P19.CL6 cells; embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and investigated their role in DMSO and embryoid body (EB)-mediated mesodermal and cardiac differentiation by gain- and loss-of-function studies, as well as in vivo, by the induction of teratomas. Gene expression analysis revealed that miR-1 and miR-133a are upregulated during cardiac differentiation of P19.CL6 cells, and also during ESC and iPSC EB differentiation. Forced overexpression of both miRNAs promoted mesodermal commitment and a concomitant decrease in the expression of neural differentiation markers. Moreover, overexpression of miR-1 enhanced the cardiac differentiation of P19.CL6, while miR-133a reduced it with respect to control cells. Teratoma formation experiments with P19.CL6 cells confirmed the influence of miR-1 and miR-133a during in vivo differentiation. Finally, inhibition of both miRNAs during P19.CL6 cardiac differentiation had opposite results to their overexpression. In conclusion, gene regulation involving miR-1 and miR-133a controls the mesodermal and cardiac fate of pluripotent stem cells. Copyright © 2014 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.1977 | DOI Listing |
Int J Mol Sci
January 2025
Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.
The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain.
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.
Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!