In ovo delivery of Newcastle disease virus conjugated hybrid calcium phosphate nanoparticle and to study the cytokine profile induction.

Mater Sci Eng C Mater Biol Appl

Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 007, India; Translational Research Platform for Veterinary Biologicals (TRPVB), Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, Tamil Nadu, India. Electronic address:

Published: December 2014

In this report, the hybrid calcium phosphate (CaP) nanoparticles were synthesized and functionalized with Newcastle disease virus (NDV). These nanoparticles were synthesized by a combination of co-precipitation and polymerization process and functionalized with amino propyl triethoxy silane before coupling to NDV. The 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT) assay of chicken spleen cells incubated with these nanoparticles indicated that, these particles did not exert any significant cytotoxicity. The effects of hybrid CaP nanoparticles on cell cycle were assayed using a flow cytometer. The results demonstrated that the cell viability and proliferation capacity of spleen cells were not affected by hybrid CaP nanoparticles compared with their control cells. The hybrid CaP nanoparticles were characterized by scanning/transmission electron microscopy (SEM/TEM); Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction patterns (XRD), Raman spectroscopy and energy-dispersive X-ray spectroscopy (EDX). These methods revealed that NDV was successfully conjugated on nanoparticles. The ability of the hybrid CaP nanoparticles to induce different cytokine mRNAs in the spleen cells of 18-day old embryonated chicken eggs (ECEs) was studied by quantitative real time polymerase chain reaction (qRT-PCR). NDV conjugated particles induced a high expression of Th1 cytokines such as interferon (IFN)-α, tumor necrosis factor (TNF)-α of and Th2 cytokines, interleukin (IL) 6 and IL-10. Uncoupled NDV induced only Th1 cytokines, IFN-α, INF-γ and TNF-α. The hybrid particles alone did not induce any cytokines. This confirmed that nanoparticle coupling could induce differential cytokine profiles and hence can be used as an alternate strategy to direct favorable immune responses in animals or chickens using appropriate vaccination carrier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.10.016DOI Listing

Publication Analysis

Top Keywords

cap nanoparticles
20
hybrid cap
16
spleen cells
12
newcastle disease
8
disease virus
8
hybrid calcium
8
calcium phosphate
8
nanoparticles
8
nanoparticles synthesized
8
cells hybrid
8

Similar Publications

The treatment of antibiotic wastewater often faces the challenge of simultaneously and effectively degrading multiple components under complex conditions. To address this challenge, magnetite nanoparticles doped ultrafine activated charcoal powder (MNPs/UACP), which effectively catalyzed the decomposition of HO into •OH and HO•, was prepared using chemical co-precipitation. Under optimum conditions (i.

View Article and Find Full Text PDF

Introduction: Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the application of SeNPs in anticancer has been limited due to instability. Herein, Capsaicin (Cap), a natural active compound found in chili peppers with favorable anticancer activity, was modified with SeNPs to prepare Cap-decorated SeNPs (Cap@SeNPs), and the antiproliferative effect and mechanism of Cap@SeNPs in HepG2 were investigated.

View Article and Find Full Text PDF

Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection.

Sci Rep

December 2024

Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.

Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them.

View Article and Find Full Text PDF

Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils.

Biosens Bioelectron

March 2025

Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical College, Bengbu, 233000, China. Electronic address:

The construction of structure-guided aptamers and the ultra-sensitive aptamer-based lateral flow assays (Apt-LFA) integrated detection method hold significant potential for food analysis. Using an engineered modified sequence strategy, we successfully developed the aptamer Cap-1-2M4, significantly enhancing its affinity for capsaicin (CAP) to 0.6197 ± 0.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!