To study the influence of particle size on drug efficacy and other properties, a series of methotrexate intercalated layered double hydroxides (MTX/LDHs) were synthesized through the traditional coprecipitation method, using a mixture of water and polyethylene glycol (PEG-400) as the solvent. To adjust the particle size of MTX/LDHs, the dropping way, the volume ratio of water to PEG-400 and different hydrothermal treatment time changed accordingly, and the results indicate that the particle size can be controlled between 90 and 140 nm. Elemental C/H/N and inductive coupled plasma (ICP) analysis indicated that different synthesis conditions almost have no effect on the compositions of the nanohybrids. X-ray diffraction (XRD) patterns manifested the successful intercalation of MTX anions into the LDH interlayers, and it's also found out that different volume ratios of water to PEG-400 and variable dropping way can affect the crystallinity of the final samples, i.e., the volume ratio of 3:1 and pH decreasing are proved to be optimum conditions. Furthermore, both antiparallel monolayer and bilayers adopting different orientations are suggested for four samples from XRD results. Fourier transform infrared spectroscopy (FTIR) investigations proved the coexistence of CO3(2-) and MTX anions in the interlayer of the nanohybrids. MTX/LDH particles exhibited hexagonal platelet morphology with round corner and different dropping ways can affect the morphology greatly. Moreover, a DSC study indicated that longer time treatment can weaken the bond between the MTX anions and LDH layers. The kinetic release profiles told us that larger MTX/LDH particles have enhanced the ability of LDH layers to protect interlayer molecules. At last, the bioassay study indicated that the nanohybrids with larger diameters have higher tumor suppression efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2014.09.024 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia. Electronic address:
Xanthohumol(Xn) is isolated from female inflorescences of Humulus lupulus. It has been discovered that Xn and its formulation are useful in the treatment of cancer. As this bioactive compound has medicinal importance, hence, a novel, precise, and sensitive HPLC method should be developed.
View Article and Find Full Text PDFSci Total Environ
January 2025
Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain. Electronic address:
Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!