This paper deals with composite structures for biomedical applications. For this purpose, an architectured tubular structure composed of Nickel Titanium (NiTi) Shape Memory Alloy (SMA) and silicone rubber was fabricated. One of the main interests of such structures is to ensure a good adhesion between its two constitutive materials. A previous study of the authors (Rey et al., 2014) has shown that the adhesion between NiTi and silicone rubber can be improved by an adhesion promoter or plasma treatment. However, adhesion promoters are often not biocompatible. Hence, plasma treatment is favored to be used in the present study. Three different gases were tested; air, argon and oxygen. The effects of these treatments on the maximum force required to pull-out a NiTi wire from the silicone rubber matrix were investigated by means of pull-out tests carried out with a self-developed device. Among the three gases, a higher maximum force was obtained for argon gas in the plasma treatment. A tube shaped architectured NiTi/silicone rubber structure was then produced using this treatment. The composite was tested by means of a bulge test. Results open a new way of investigations for architectured NiTi-silicone structures for biomechanical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.08.062DOI Listing

Publication Analysis

Top Keywords

silicone rubber
16
plasma treatment
12
niti silicone
8
rubber structure
8
biomedical applications
8
three gases
8
maximum force
8
rubber
5
original architectured
4
niti
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!