Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

Mater Sci Eng C Mater Biol Appl

Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:

Published: December 2014

This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.08.065DOI Listing

Publication Analysis

Top Keywords

dcp-rich cpc
24
calcium phosphate
16
bone graft
16
phosphate bone
12
graft substitutes
12
posterolateral lumbar
12
lumbar fusion
12
spinal fusion
12
cpc group
12
cpc
9

Similar Publications

In this study, we investigated the effect of supplementing a non-dispersive dicalcium phosphate-rich calcium phosphate bone cement (DCP-rich CPC) with type I collagen on in vitro cellular activities and its performance as a bone graft material. Varying amounts of type I collagen were added during the preparation of the DCP-rich CPC. In vitro cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity were evaluated using progenitor bone cells.

View Article and Find Full Text PDF

This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group).

View Article and Find Full Text PDF

Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility.

Mater Sci Eng C Mater Biol Appl

June 2014

Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 407, Taiwan. Electronic address:

In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement.

View Article and Find Full Text PDF

Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement.

J Biomed Mater Res A

January 2015

College of Dental Medicine, Kaohsiung Medical University, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Fiber and Composite Materials, Feng Chia University, Taichung, 407, Taiwan.

Calcium phosphate cement (CPC) is a widely used bone substitute. However, CPC application is limited by poor bioresorption, which is attributed to apatite, the stable product. This study aims to systematically survey the biological performance of dicalcium phosphate (DCP)-rich CPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!