Targeted antioxidant treatment decreases cardiac alternans associated with chronic myocardial infarction.

Circ Arrhythm Electrophysiol

From The Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus (B.N.P., H.L., X.W., I.D., K.R.L.), and Department of Biomedical Engineering (B.N.P., I.D., K.R.L.), Case Western Reserve University, Cleveland, OH.

Published: February 2015

Background: In myocardial infarction (MI), repolarization alternans is a potent arrhythmia substrate that has been linked to Ca2+ cycling proteins, such as sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), located in the sarcoplasmic reticulum. MI is also associated with oxidative stress and increased xanthine oxidase (XO) activity, an important source of reactive oxygen species (ROS) in the sarcoplasmic reticulum that may reduce SERCA2a function. We hypothesize that in chronic MI, XO-mediated oxidation of SERCA2a is a mechanism of cardiac alternans.

Methods And Results: Male Lewis rats underwent ligation of the left anterior descending coronary artery (n=54) or sham procedure (n=24). At 4 weeks, optical mapping of intracellular Ca2+ and ROS was performed. ECG T-wave alternans (ECG ALT) and Ca2+ transient alternans (Ca2+ALT) were induced by rapid pacing (300-120 ms) before and after the XO inhibitor allopurinol (ALLO, 50 µmol/L). In MI, ECG ALT (2.32±0.41%) and Ca2+ ALT (22.3±4.5%) were significantly greater compared with sham (0.18±0.08%, P<0.001; 0.79±0.32%, P<0.01). Additionally, ROS was increased by 137% (P<0.01) and oxidation of SERCA2a by 30% (P<0.05) in MI compared with sham. Treatment with ALLO significantly decreased ECG ALT (-77±9%, P<0.05) and Ca2+ ALT (-56±7%, P<0.05) and, importantly, reduced ROS (-65%, P<0.01) and oxidation of SERCA2a (-38%, P<0.05). CaMKII inhibition and general antioxidant treatment had no effect on ECG ALT and Ca2+ ALT.

Conclusions: These results demonstrate, for the first time, that in MI, increased ROS from XO is a significant cause of repolarization alternans. This suggests that targeting XO ROS production may be effective at preventing arrhythmia substrates in chronic MI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334735PMC
http://dx.doi.org/10.1161/CIRCEP.114.001789DOI Listing

Publication Analysis

Top Keywords

sarcoplasmic reticulum
12
myocardial infarction
8
ecg alt
8
ca2+
5
targeted antioxidant
4
antioxidant treatment
4
treatment decreases
4
decreases cardiac
4
alternans
4
cardiac alternans
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!