The freezing of aqueous solutions and reciprocal distribution of ice and a freeze-concentrated solution (FCS) are poorly understood in spite of their importance in fields ranging from biotechnology and life sciences to geophysics and climate change. Using an optical cryo-microscope and differential scanning calorimetry, we demonstrate that upon cooling of citric acid and sucrose solutions a fast freezing process results in a continuous ice framework (IF) and two freeze-concentrated solution regions of different concentrations, FCS1 and FCS2. The FCS1 is maximally freeze-concentrated and interweaves with IF. The less concentrated FCS2 envelops the entire IF/FCS1. We find that upon further cooling, the FCS1 transforms to glass, whereas the slow freezing of FCS2 continues until it is terminated by a FCS2-glass transition. We observe the resumed slow freezing of FCS2 upon subsequent warming. The net thermal effect of the resumed freezing and a reverse glass-FCS1 transition produces the Ttr2-transition which before has only been observed upon warming of frozen hydrocarbon solutions and which nature has remained misunderstood for decades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261172PMC
http://dx.doi.org/10.1038/srep07414DOI Listing

Publication Analysis

Top Keywords

freezing process
8
aqueous solutions
8
freeze-concentrated solution
8
slow freezing
8
freezing fcs2
8
freezing
5
visualization freezing
4
process situ
4
situ cooling
4
cooling warming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!