The inner ear vestibular system has numerous projections on central brain centers that regulate sympathetic outflow, and skeletal sympathetic projections affect bone remodeling by inhibiting bone formation by osteoblasts and promoting bone resorption by osteoclasts. In this study, we show that bilateral vestibular lesions in mice cause a low bone mass phenotype associated with decreased bone formation and increased bone resorption. This reduction in bone mass is most pronounced in lower limbs, is not associated with reduced locomotor activity or chronic inflammation, and could be prevented by the administration of the β-blocker propranolol and by genetic deletion of the β2-adrenergic receptor, globally or specifically in osteoblasts. These results provide novel experimental evidence supporting a functional autonomic link between central proprioceptive vestibular structures and the skeleton. Because vestibular dysfunction often affects the elderly, these results also suggest that age-related bone loss might have a vestibular component and that patients with inner ear pathologies might be at risk for fracture. Lastly, these data might have relevance to the bone loss observed in microgravity, as vestibular function is altered in this condition as well. © 2015 American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772960 | PMC |
http://dx.doi.org/10.1002/jbmr.2426 | DOI Listing |
Vet Res Forum
November 2024
Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India.
African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.
View Article and Find Full Text PDFClin Nucl Med
January 2025
From the Department of Nuclear Medicine and PET-CT, AIG Hospitals, Hyderabad, India.
Endolymphatic sac tumors (ELSTs) are rare, slow-growing, and locally aggressive neoplasms that originate from the epithelial lining of the endolymphatic duct and sac. These are characterized by their infiltrative growth pattern and the potential for local destruction of surrounding structures, including the inner ear and temporal bone. We report a case of an incidentally diagnosed sporadic ELST.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
Novel therapeutic delivery systems and delivery methods to the inner ear are necessary to treat hearing loss and inner ear disorders. However, numerous barriers exist to therapeutic delivery into the bone-encased and immune-privileged environment of the inner ear and cochlea, which makes treating inner ear disorders challenging. Nanoparticles (NPs) are a type of therapeutic delivery system that can be engineered for multiple purposes, and posterior semicircular canal (PSCC) infusion is a method to directly deposit them into the cochlea.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Chiba, Japan.
Migration routes and the depth patterns of anguillid eel larvae migrating long distances from spawning grounds in the ocean remain poorly understood. We used otolith stable isotope analysis to study the oceanic migrations of anguillid eels by reconstructing experienced water temperature histories of larvae. The otolith stable oxygen isotopes (δO) of recruited Anguilla japonica glass eels were analyzed to assess the relationship with the experienced water temperature of the early larval stage in laboratory experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!