The synthesis of a bowl-shaped trinuclear circular titanium-based helicate is reported. The strategy allowing access to this neutral architecture is based on a multicomponent self-assembly approach in which the ligands involved in the process are a bis-biphenol strand and 2,2'- bipyrimidine. By reacting the bis-biphenol ligand and 2,2'-bipyrimidine with an equimolar amount [Ti(OiPr)4 ], a bowl-shaped architecture is obtained through the formation of 18 new coordination bonds. This aggregate built from three octahedral TiO4 N2 nodes displays an unusually high stability in solution compared to related species. In addition, by modifying the stoichiometry of the initial components, two assemblies incorporating two titanium centers bridged by a 2,2'-bipyrimidine ligand are obtained. The crystal structures of these species are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201405339DOI Listing

Publication Analysis

Top Keywords

multicomponent self-assembly
8
self-assembly approach
8
bowl-shaped circular
4
circular trinuclear
4
trinuclear helicate
4
helicate generated
4
generated tio4
4
tio4 motif
4
motif multicomponent
4
approach synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!