Background Context: The direct vertebral rotation (DVR) technique involves vertebral manipulation by the application of force in the transverse plane using a pedicle screw as the anchor point. The biomechanics of this technique has not been well studied, and the applied derotation force may affect cosmetic outcome and potential complications.

Purpose: The purpose of the study was to develop an in vitro biomechanical model replicating DVR and examine the effects of screw placement, derotation direction, and segmental versus en bloc rotation on correction.

Study Design: This study is based on a cadaveric spine model examining the biomechanics of DVR.

Methods: Short three vertebral segments were dissected from thoracolumbar cadaveric spines (T5-L4). Each pedicle of the central vertebra received a unicortical, bicortical, or in-out-in screw. Unconstrained biomechanical tests were performed in an axial rotation (medial and lateral directions) mimicking DVR surgery. Nondestructive tests were performed examining peak force and rotational stiffness with/without a contralateral rod. A destructive failure test was performed on each pedicle screw with a contralateral rod connecting via the contralateral pedicle screw. Repeated-measures analysis of variance and post hoc Student t tests were used to detect significance with screw placement and loading direction as main factors.

Results: Without the contralateral rod, the rotation direction was significant (p=.004, medial stiffness more than lateral). With the contralateral rod, in-out-in placement demonstrated lower stiffness than unicortical or bicortical screws (p=.009), and the rotation direction was significant (p=.003, medial stiffness more than lateral). There was no interaction effect between main factors. Peak force with and without a contralateral rod resulted in a similar pattern of significance as stiffness. Destructive failure tests showed that the placement was significant (p<.02) with in-out-in resulting in lower stiffness than unicortical- and bicortical-placed screws. In-out-in (25±6 N) and unicortical (35±16 N) placements resulted in lower peak load (p<.001) than bicortical (48±17 N) screws.

Conclusions: The biomechanical characteristics of DVR are dependent on the derotation direction and screw placement. Correction for adolescent idiopathic scoliosis can be attempted irrespective of the type of pedicle screw placement, more efficiently if performing derotation maneuvers en bloc on bicortical screws in the medial direction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2014.12.002DOI Listing

Publication Analysis

Top Keywords

contralateral rod
20
pedicle screw
12
direct vertebral
8
vertebral rotation
8
biomechanical model
8
screw placement
8
unicortical bicortical
8
tests performed
8
peak force
8
destructive failure
8

Similar Publications

Background: Effects of rigid posterior instrumentation on the three-dimensional post-operative spinal flexibility are widely unknown. Purpose of this in vitro study was to quantify these effects for characteristic adolescent idiopathic scoliosis instrumentations.

Methods: Six fresh frozen human thoracic and lumbar spine specimens (C7-S) with entire rib cage from young adult donors (26-45 years) without clinically relevant deformity were loaded quasi-statically with pure moments of 5 Nm in flexion/extension, lateral bending, and axial rotation.

View Article and Find Full Text PDF

Background And Purpose: Residual axial and rotational deformities in tibial shaft fracture, after minimally invasive osteosynthesis (MIO) treatment, are widely described in literature. Nevertheless, there is still a lack of evidence about the malunion treatment strategies and results. The aim of our study is to present an innovative technique for tibial shaft malunion: a derotational proximal tibial osteotomy without removing the original plate (Plate-Retaining-Osteotomy: PR-Osteotomy).

View Article and Find Full Text PDF
Article Synopsis
  • Total knee arthroplasty (TKA) is a common surgical procedure for patients with severe knee osteoarthritis, especially when non-surgical treatments fail, leading to significant improvements in pain, function, and quality of life.
  • The procedure can use various components (cemented, cementless, or a hybrid) and is generally performed with a focus on mechanical alignment, although newer alignment strategies like gap and kinematic balancing are showing promising results in early studies.
  • The preferred surgical technique for cementless TKA involves a specific patient positioning and incision approach, starting with the application of a thigh tourniquet and a parapatellar incision, ensuring proper alignment and access during the surgery.*
View Article and Find Full Text PDF

Vocal Fold Injury Produces Similar Biomechanical Outcomes in Male and Female Rabbits.

J Voice

September 2024

Department of Head and Neck Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California. Electronic address:

Objective: Sex differences in response to trauma and physiologic stressors have been identified in numerous organ systems but have not yet been defined in the larynx. The objective of this study was to develop an endoscopic vocal fold injury model in rabbits and to compare structural and functional outcomes between male and female subjects.

Study Design: Basic science study.

View Article and Find Full Text PDF

Study Design: Biomechanical Cadaveric Study.

Objectives: Following the successful use of a novel implantable sensor (Monitor) in evaluating the progression of fracture healing in long bones and posterolateral fusion of the spine based on implant load monitoring, the aim of this study was to investigate its potential to assess healing of transosseous fractures of a lumbar vertebra stabilized with a pedicle-screw-rod construct.

Methods: Six human cadaveric spines were instrumented with pedicle screws and rods spanning L3 vertebra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!