Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.

Acc Chem Res

Departamento de Física, Universidade Federal de Minas Gerais (UFMG) , Caixa Postal 702, Belo Horizonte, 30123-970 Minas Gerais, Brazil.

Published: January 2015

CONSPECTUS: Raman spectroscopy is one of the most powerful experimental tools to study graphene, since it provides much useful information for sample characterization. In this Account, we show that this technique is also convenient to study other bidimensional materials beyond graphene, and we will focus on the semiconducting transition metal dichalcogenides (MX2), specifically on MoS2 and WS2. We start by comparing the atomic structure of graphene and 2H-MX2 as a function of the number of layers in the sample. The first-order Raman active modes of each material can be predicted on the basis of their corresponding point-group symmetries. We show the analogies between graphene and 2H-MX2 in their Raman spectra. Using several excitation wavelengths in the visible range, we analyze the first- and second-order features presented by each material. These are the E2g and 2TO(K) bands in graphene (also known as the G and 2D bands, respectively) and the A1', E', and 2LA(M) bands in 2H MX2. The double-resonance processes that originate the second-order bands are different for both systems, and we will discuss them in terms of the different electronic structure and phonon dispersion curves presented by each compound. According to the electronic structure of graphene, which is a zero band gap semiconductor, the Raman spectrum is resonant for all the excitation wavelengths. Moreover, due to the linear behavior of the electronic dispersion near the K point, the double-resonance bands of graphene are dispersive, since their frequencies vary when we change the laser energy used for the sample excitation. In contrast, the semiconducting MX2 materials present an excitonic resonance at the direct gap, and consequently, the double-resonance Raman bands of MX2 are not dispersive, and only their intensities depend on the laser energy. In this sense, resonant Raman scattering experiments performed in transition metal dichalcogenides using a wide range of excitation energies can provide information about the electronic structure of these materials, which is complementary to other optical spectroscopies, such as absorption or photoluminescence. Raman spectroscopy can also be useful to address disorder in MX2 samples in a similar way as it is used in graphene. Both materials exhibit additional Raman features associated with phonons within the interior of the Brillouin zone that are activated by the presence of defects and that are not observed in pristine samples. Such is the case of the well-known D band of graphene. MX2 samples present analogous features that are clearly observed at specific excitation energies. The origins of these double-resonance Raman bands in MX2 are still subjects of current research. Finally, we discuss the suitability of Raman spectroscopy as a strain or doping sensor. Such applications of Raman spectroscopy are being extensively studied in the case of graphene, and considering its structural analogies with MX2 systems, we show how this technique can also be used to provide strain/doping information for transition metal dichalcogenides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ar500280mDOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
20
transition metal
16
metal dichalcogenides
16
raman
12
bands mx2
12
electronic structure
12
graphene
11
mx2
8
structure graphene
8
graphene 2h-mx2
8

Similar Publications

Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:

Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy for the characterization of filtrate portions of blood serum samples of myocardial infarction patients using 30 kDa centrifugal filter devices.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Institut - Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, Montréal, Quebec H3C 3J7, Canada.

Myocardial infarction (MI) is the leading cause of death and disability worldwide. It occurs when a thrombus forms after an atherosclerotic plaque bursts, obstructing blood flow to the heart. Prompt and accurate diagnosis is crucial for improving patient survival.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address:

Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate.

View Article and Find Full Text PDF

Evaluating microplastic contamination in Omani mangrove habitats using large mud snails (Terebralia palustris).

Aquat Toxicol

December 2024

Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, CEMB, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman. Electronic address:

This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons.

View Article and Find Full Text PDF

Structural Repair of Reduced Graphene Oxide Promoted by Single-Layer Graphene.

Adv Sci (Weinh)

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.

High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!