pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.

Int J Pharm

Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Electronic address:

Published: January 2015

Hydrogels synthesized from poly(l-lysine isophthalamide) (PLP) crosslinked with l-lysine methyl ester were investigated as drug delivery systems for a wide size range of molecules (0.3-2000kDa). PLP is an anionic, pseudo-peptidic polymer that is an ideal hydrogel backbone due to its pH-responsiveness and amphiphilicity. Drug loading and release were evaluated for various model drugs: hydrophobic fluorescein (Mw=332Da) and hydrophilic fluorescein isothiocyanate-dextran (FITC-Dex Mw=10kDa, 150kDa, 500kDa, and 2000kDa). Weight incorporation was high, up to 22.8±3.1%. Release after 24h in pH 7.4 was in the range from 70.4±1.2% to 91.6±0.8% for all model drugs. In contrast, drug release after 24h in pH 3.0 was significantly lower, less than 8% for fluorescein, 500kDa, and 2000kDa FITC-Dex. Thus, the adaptability of these novel hydrogels to both hydrophobic and hydrophilic molecules, spanning a wide size range, suggests their use as a platform delivery system. This is also the first known hydrogel system for the oral delivery of payloads larger than 70kDa, which, combined with triggered release in response to pH changes along the gastrointestinal tract, indicates that these hydrogels have promising applications in oral drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2014.12.005DOI Listing

Publication Analysis

Top Keywords

wide size
12
size range
12
oral delivery
8
range molecules
8
drug delivery
8
model drugs
8
500kda 2000kda
8
release 24h
8
delivery
5
ph-responsive lysine-based
4

Similar Publications

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers.

Polymers (Basel)

December 2024

Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF

, an / Family Gene, Involved in the Regulation of Seed-Specific Traits in Rice.

Plants (Basel)

December 2024

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.

The Aux/IAA family proteins, key components of the auxin signaling pathway, are plant-specific transcription factors with important roles in regulating a wide range of plant growth and developmental events. The family genes have been extensively studied in Arabidopsis. However, most of the family genes in rice have not been functionally studied.

View Article and Find Full Text PDF

A Comprehensive Review: Mesoporous Silica Nanoparticles Greatly Improve Pharmacological Effectiveness of Phytoconstituent in Plant Extracts.

Pharmaceuticals (Basel)

December 2024

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.

Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations.

View Article and Find Full Text PDF

Modularized Reconfigurable Functional Electromagnetic Surfaces Using Tightly Coupled Antennas and Back-Loaded Radio Frequency Circuits.

Micromachines (Basel)

December 2024

Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

This paper presents a modularized reconfigurable functional electromagnetic surface (MRFES) for broadband absorption and polarization conversion by using tightly coupled dipole antennas (TCDA) and back-loaded radio frequency (RF) circuits (BLRFC). A dual-polarized antenna array with tight coupling and wide angular scanning characteristics is designed. By loading different RF circuits on the back side of the antenna array's ground plane, switchable broadband absorption and polarization conversion functions are achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!