A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degron protease blockade sensor to image epigenetic histone protein methylation in cells and living animals. | LitMetric

AI Article Synopsis

  • - Lysine methylation of histone H3 and H4 is a key target for new treatments of cellular diseases, and a new assay can speed up drug development.
  • - Researchers developed a real-time molecular imaging biosensor that monitors the methylation of histone H3-K9 in live animals.
  • - The sensor proved effective in various tests, including its response to drugs in mice, showing promise for use in preclinical drug evaluations.

Article Abstract

Lysine methylation of histone H3 and H4 has been identified as a promising therapeutic target in treating various cellular diseases. The availability of an in vivo assay that enables rapid screening and preclinical evaluation of drugs that potentially target this cellular process will significantly expedite the pace of drug development. This study is the first to report the development of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation status of a specific histone lysine methylation mark (H3-K9) in live animals. The sensitivity of this sensor was assessed in various cell lines, in response to down-regulation of methyltransferase EHMT2 by specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase inhibitors BIX01294 and Chaetocin in mice reveals the potential of this sensor for preclinical drug evaluation. This biosensor thus has demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301175PMC
http://dx.doi.org/10.1021/cb5008037DOI Listing

Publication Analysis

Top Keywords

lysine methylation
8
drug development
8
preclinical drug
8
degron protease
4
protease blockade
4
blockade sensor
4
sensor image
4
image epigenetic
4
epigenetic histone
4
histone protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: