A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Missense variants in CFTR nucleotide-binding domains predict quantitative phenotypes associated with cystic fibrosis disease severity. | LitMetric

Missense variants in CFTR nucleotide-binding domains predict quantitative phenotypes associated with cystic fibrosis disease severity.

Hum Mol Genet

Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Published: April 2015

Predicting the impact of genetic variation on human health remains an important and difficult challenge. Often, algorithmic classifiers are tasked with predicting binary traits (e.g. positive or negative for a disease) from missense variation. Though useful, this arrangement is limiting and contrived, because human diseases often comprise a spectrum of severities, rather than a discrete partitioning of patient populations. Furthermore, labeling variants as causal or benign can be error prone, which is problematic for training supervised learning algorithms (the so-called garbage in, garbage out phenomenon). We explore the potential value of training classifiers using continuous-valued quantitative measurements, rather than binary traits. Using 20 variants from cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domains and six quantitative measures of cystic fibrosis (CF) severity, we trained classifiers to predict CF severity from CFTR variants. Employing cross validation, classifier prediction and measured clinical/functional values were significantly correlated for four of six quantitative traits (correlation P-values from 1.35 × 10(-4) to 4.15 × 10(-3)). Classifiers were also able to stratify variants by three clinically relevant risk categories with 85-100% accuracy, depending on which of the six quantitative traits was used for training. Finally, we characterized 11 additional CFTR variants using clinical sweat chloride testing, two functional assays, or all three diagnostics, and validated our classifier using blind prediction. Predictions were within the measured sweat chloride range for seven of eight variants, and captured the differential impact of specific variants on the two functional assays. This work demonstrates a promising and novel framework for assessing the impact of genetic variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366609PMC
http://dx.doi.org/10.1093/hmg/ddu607DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
cftr nucleotide-binding
8
nucleotide-binding domains
8
impact genetic
8
genetic variation
8
binary traits
8
cftr variants
8
quantitative traits
8
sweat chloride
8
functional assays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!