Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

Genetics

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, Czech Republic

Published: February 2015

Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317667PMC
http://dx.doi.org/10.1534/genetics.114.172163DOI Listing

Publication Analysis

Top Keywords

telomere length
32
natural variation
12
variation telomere
12
telomere
10
length
8
length arabidopsis
8
arabidopsis thaliana
8
length homeostasis
8
extent natural
8
telomere lengths
8

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased mortality and malignancy risk, yet the determinants of clonal expansion remain poorly understood. We performed sequencing at >4,000x depth of coverage for CHIP mutations in 6,986 postmenopausal women from the Women's Health Initiative at two timepoints approximately 15 years apart. Among 3,685 mutations detected at baseline (VAF ≥ 0.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) are inherited conditions associated with multisystem manifestations. We describe clinical and functional characterisation of a novel TERT variant. Whole-genome sequencing was performed along with single length analysis ().

View Article and Find Full Text PDF

Stress and telomere length in leukocytes: Investigating the role of GABRA6 gene polymorphism and cortisol.

Psychoneuroendocrinology

January 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:

Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.

View Article and Find Full Text PDF

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!