Most empirical evidence suggests that balancing selection does not counter the effects of genetic drift in shaping postbottleneck major histocompatibility complex (MHC) genetic diversity when population declines are severe or prolonged. However, few studies have been able to include data from historical specimens, or to compare populations/species with different bottleneck histories. In this study, we examined MHC class II B and microsatellite diversity in four New Zealand passerine (songbird) species that experienced moderate to very severe declines. We compared diversity from historical samples (collected c. 1884-1938) to present-day populations. Using a Bayesian framework, we found that the change in genetic diversity from historical to contemporary samples was affected by three main factors: (i) whether the data were based on MHC or microsatellite markers, (ii) species (as a surrogate for bottleneck severity) and (iii) whether the comparison between historical and contemporary samples was made using historical samples originating from the mainland, or using historical samples originating from islands. The greatest losses in genetic diversity occurred for the most severely bottlenecked species, particularly between historical mainland and contemporary samples. Additionally, where loss of diversity occurred, the change was greater for MHC genes compared to microsatellite loci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.13039 | DOI Listing |
HGG Adv
January 2025
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans.
View Article and Find Full Text PDFCommun Biol
January 2025
School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Vibrio vulnificus is a significant zoonotic pathogen that causes severe vibriosis in humans and fish. The lack of a national annual surveillance program in China has hindered understanding of its epidemiological characteristics and genetic diversity. This study characterized 150 V.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!