Functional analysis of OsPGIP1 in rice sheath blight resistance.

Plant Mol Biol

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, People's Republic of China.

Published: January 2015

As one of the most devastating diseases of rice, sheath blight causes severe rice yield loss. However, little progress has been made in rice breeding for sheath blight resistance. It has been reported that polygalacturonase inhibiting proteins can inhibit the degradation of the plant cell wall by polygalacturonases from pathogens. Here, we prokaryotically expressed and purified OsPGIP1 protein, which was verified by Western blot analysis. Activity assay confirmed the inhibitory activity of OsPGIP1 against the PGase from Rhizoctonia solani. In addition, the location of OsPGIP1 was determined by subcellular localization. Subsequently, we overexpressed OsPGIP1 in Zhonghua 11 (Oryza sativa L. ssp. japonica), and applied PCR and Southern blot analysis to identify the positive T0 transgenic plants with single-copy insertions. Germination assay of the seeds from T1 transgenic plants was carried out to select homozygous OsPGIP1 transgenic lines, and the expression levels of OsPGIP1 in these lines were analyzed by quantitative real-time PCR. Field testing of R. solani inoculation showed that the sheath blight resistance of the transgenic rice was significantly improved. Furthermore, the levels of sheath blight resistance were in accordance with the expression levels of OsPGIP1 in the transgenic lines. Our results reveal the functions of OsPGIP1 and its resistance mechanism to rice sheath blight, which will facilitate rice breeding for sheath blight resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-014-0269-7DOI Listing

Publication Analysis

Top Keywords

sheath blight
28
blight resistance
20
rice sheath
12
ospgip1
9
rice breeding
8
breeding sheath
8
blot analysis
8
transgenic plants
8
ospgip1 transgenic
8
transgenic lines
8

Similar Publications

Rice extracellular vesicles send defense proteins into fungus Rhizoctonia solani to reduce disease.

Dev Cell

December 2024

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China. Electronic address:

The exchange of molecular information across kingdoms is crucial for the survival of both plants and their pathogens. Recent research has identified that plants transfer their small RNAs and microRNAs into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogens remains unknown.

View Article and Find Full Text PDF

Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.

View Article and Find Full Text PDF

Functional Characterization of , a Gene Coding an Aspartic Acid Protease in .

J Fungi (Basel)

December 2024

Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.

Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .

View Article and Find Full Text PDF

The rice plant is one of the most significant crops in the world, and it suffers from various diseases. The traditional methods for rice disease detection are complex and time-consuming, mainly depending on the expert's experience. The explosive growth in image processing, computer vision, and deep learning techniques provides effective and innovative agriculture solutions for automatically detecting and classifying these diseases.

View Article and Find Full Text PDF

Pearl millet (Pennisetum glaucum R. Br.) is a vital crop, especially in arid and semi-arid regions, where it serves as a staple food for millions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!