Carboxymethyl cellulose (CMC) is a plant-derived material that has high biocompatibility and water solubility. We developed a CMC nonwoven sheet as a hemostatic agent by carboxymethylating a continuous filament cellulose nonwoven sheet. The CMC nonwoven sheet was able to absorb water and dissolve in it. The rates of absorption and dissolution depended on the degree of carboxymethylation. After dissolving in blood, CMC accelerated clot development (possibly owing to the incorporation of CMC into fibrin fibers) and increased the viscosity of the blood, both of which would contribute to the improved blood clotting of an injured surface. In vivo experiments using a rat tail cutting method showed that a CMC nonwoven sheet shortened the bleeding time of the tail when applied to the cut surface. The hemostatic effect of the CMC nonwoven sheet was almost at the same level as a commercial hemostatic bandage. These results suggest that a CMC nonwoven sheet could be used as a novel sheet-type hemostatic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2014.10.026DOI Listing

Publication Analysis

Top Keywords

nonwoven sheet
28
cmc nonwoven
20
hemostatic agent
12
carboxymethyl cellulose
8
cellulose nonwoven
8
sheet novel
8
cmc
8
nonwoven
7
sheet
7
hemostatic
5

Similar Publications

Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.

View Article and Find Full Text PDF

In classical cell culture techniques, cancer cells typically proliferate in a single layer by adhering to the undersurface of laboratory vessels. Consequently, concerns have been raised regarding the fidelity of the morphological and functional characteristics of these cultured cancer cells compared to those of their counterparts. Our previous studies have investigated various epithelial malignant tumors utilizing the Tissueoid cell culture system, a three-dimensional (3D) cultivation method employing Cellbed-a nonwoven sheet composed of high-purity silica fibers as a scaffold.

View Article and Find Full Text PDF

An investigation into Cu(II) adsorption from contaminated water utilizing a trickle tray column that has been upscaled from batch-scale adsorption was performed to understand the efficacy of the adsorbent when used in a continuous system-which is more common in actual use in an industry. The size of the functionalized fabric adsorbent selected in a pilot-scale is about four times larger than a batch-scale. The continuous Cu(II) adsorption was analyzed using three parameters: initial Cu(II) concentration in solution; inlet solution flow rate and number of adsorbent sheets in the column to estimate the adsorption process's breakthrough curve results.

View Article and Find Full Text PDF

Electrospun nonwovens of biopolymers are gaining popularity in filtration, coatings, encapsulation, and packaging materials. However, their applications are hindered by limited stability, particularly when loaded with lipids. This research aimed to apply a multiscale approach to gain insights into deteriorative processes, e.

View Article and Find Full Text PDF
Article Synopsis
  • Gelatin hydrogel nonwoven fabrics, known as Genocel, are being studied for their potential to improve wound healing in diabetic mice, specifically for difficult-to-treat wounds like diabetic foot ulcers, by enhancing blood vessel formation.
  • In the study, both Genocel and a standard skin substitute (Pelnac) were tested on skin defects, and their healing effects were assessed through various histological analyses.
  • Results showed that Genocel had comparable wound healing effects to Pelnac, with the main difference being a lower number of M2 macrophages in the Genocel-treated wounds on day 7, suggesting both materials could be effective in managing diabetic ulcers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!