DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275890PMC
http://dx.doi.org/10.1098/rstb.2013.0383DOI Listing

Publication Analysis

Top Keywords

environmental dna
8
dna
5
ancient modern
4
environmental
4
modern environmental
4
dna dna
4
dna environmental
4
environmental samples
4
samples sediments
4
sediments ice
4

Similar Publications

Inverse dose protraction effects of high-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

DNA damage triggers the death of green sea turtle-derived cells at high temperature.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka-city 020-8551, Japan.

As temperatures rise due to increasingly severe global warming, the effect of high temperatures on wildlife, including green sea turtles, is one of the issues that must be addressed to ensure the conservation of biodiversity. In the current study, we found that green sea turtle cell death due to apoptosis occurred at 37 °C, which suppressed cell proliferation. We also found that high temperature-induced heat stress led to the accumulation of DNA damage in green sea turtle cells.

View Article and Find Full Text PDF

Quantification of heavy metal exposure in a British population cohort links total mercury levels in plasma with skin tissue-specific changes in mitochondrial-related gene expression.

Sci Total Environ

January 2025

Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK. Electronic address:

Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed.

View Article and Find Full Text PDF

Autoinducer-2 enhances the defense of against oxidative stress and DNA damage by modulation of c-di-GMP signaling via a two-component system.

mBio

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.

View Article and Find Full Text PDF

Unlabelled: Remote polar regions offer unique opportunities and significant challenges for antimicrobial resistance research in a near-pristine environment. While core microbiology techniques continue to have an important role in supporting environmental research, the severe cold climate presents considerable challenges to laboratory research. We explore adaptations required for core bacteriology investigations in polar regions on an unsupported remote expedition c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!