Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation.

Circulation

From the Program in Molecular Medicine (C.C.G., W.Z., C.T.D., J.A.B.-K., A.C.C., J.L., A.H.G., K.R.T., K.J.W., D.Y.L.), Department of Bioengineering (C.C.G., Y.-T.E.S.), Department of Medicine (C.C.G., W.Z., K.R.T., D.Y.L.), Department of Human Genetics (C.T.D.), Department of Oncological Sciences (A.C.C., D.Y.L.), Division of Geriatrics, Department of Medicine (A.E.W., A.J.D., L.A.L.), Division of Nephrology and Hypertension, Department of Medicine (Y.-T.E.S.), Department of Pathology (A.H.G.), Division of Cardiology, and Department of Medicine (K.J.W., D.Y.L.), University of Utah, Salt Lake City, UT; Recursion Pharmaceuticals, LLC, Salt Lake City, UT (C.C.G., D.Y.L.); CCM Italia, Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino, Italy (L.G., S.F.R.); CCM Italia, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (S.D.M.); Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, UT (A.J.D., L.A.L.); The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (D.Y.L.); and Cardiology Section, VA Salt Lake City Health Care System, Salt Lake City, UT (K.J.W., O.Y.L.).

Published: January 2015

Background: Cerebral cavernous malformation (CCM) is a hemorrhagic stroke disease affecting up to 0.5% of North Americans that has no approved nonsurgical treatment. A subset of patients have a hereditary form of the disease due primarily to loss-of-function mutations in KRIT1, CCM2, or PDCD10. We sought to identify known drugs that could be repurposed to treat CCM.

Methods And Results: We developed an unbiased screening platform based on both cellular and animal models of loss of function of CCM2. Our discovery strategy consisted of 4 steps: an automated immunofluorescence and machine-learning-based primary screen of structural phenotypes in human endothelial cells deficient in CCM2, a secondary screen of functional changes in endothelial stability in these same cells, a rapid in vivo tertiary screen of dermal microvascular leak in mice lacking endothelial Ccm2, and finally a quaternary screen of CCM lesion burden in these same mice. We screened 2100 known drugs and bioactive compounds and identified 2 candidates, cholecalciferol (vitamin D3) and tempol (a scavenger of superoxide), for further study. Each drug decreased lesion burden in a mouse model of CCM vascular disease by ≈50%.

Conclusions: By identifying known drugs as potential therapeutics for CCM, we have decreased the time, cost, and risk of bringing treatments to patients. Each drug also prompts additional exploration of biomarkers of CCM disease. We further suggest that the structure-function screening platform presented here may be adapted and scaled to facilitate drug discovery for diverse loss-of-function genetic vascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356181PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010403DOI Listing

Publication Analysis

Top Keywords

cerebral cavernous
8
cavernous malformation
8
screening platform
8
lesion burden
8
vascular disease
8
ccm
5
disease
5
strategy identifying
4
identifying repurposed
4
drugs
4

Similar Publications

Increases in mean lesional iron content by quantitative susceptibility mapping (QSM) by ≥6% and/or vascular permeability by dynamic contrast enhanced quantitative perfusion (DCEQP) by ≥40% on MRI have been associated with new symptomatic hemorrhage (SH) in cerebral cavernous malformations (CCMs). It is not known if plasma biomarkers can reflect these changes within the lesion proper. This cohort study enrolled 46 CCM patients with SH in the prior year.

View Article and Find Full Text PDF

Climate change has caused heat stress (HS) to become an increasingly severe problem for high-producing dairy herds. Although cooling systems allow milk production to remain nearly constant throughout the year, fertility decreases during summer. Physiological counter-current heat transfer mechanisms maintaining brain/hypothalamic and reproductive functions in cattle are vulnerable to HS.

View Article and Find Full Text PDF

Objective: Flow diversion is increasingly used as an endovascular treatment for intracranial aneurysms. FRED-EPI is a prospective, multicenter, French study, conducted to analyze the safety and efficacy of aneurysm treatment with FRED/FRED Jr (Microvention, AlisoViejo, CA, USA) in current clinical practice.

Patients And Methods: Patients with intracranial aneurysms treated with FRED and FRED Jr who agreed to participate were prospectively and consecutively included in all French centers using these devices.

View Article and Find Full Text PDF

Objective: To evaluate iron deposition patterns in patients with cerebral cavernous malformation-related epilepsy (CRE) using quantitative susceptibility mapping (QSM) for detailed analysis of iron distribution associated with a history of epilepsy and severity.

Methods: This study is part of the Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy (CRESS) cohort, a prospective multicenter study. QSM was used to quantify iron deposition in patients with sporadic cerebral cavernous malformation (CCMs).

View Article and Find Full Text PDF

We report a rare case of a missed intracavernous internal carotid artery dissecting aneurysm occurring as a complication of the base of skull fracture with severe brain injury causing acute cavernous sinus syndrome with permanent vision loss. A 31-year-old Myanmar lady had an alleged motor vehicle accident and suffered severe traumatic brain injury with multiple intracranial bleeds, multiple facial bone and base of skull fractures, and limb fractures. At one week post-trauma, she had severe right eye proptosis with vision loss, ophthalmoplegia, chemosis, and high intraocular pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!