Background: Over 100 types of soft tissue repair materials are commercially available for hernia repair applications. These materials vary in characteristics such as mesh density, pore size, and pore shape. It is difficult to determine the impact of a single variable of interest due to other compounding variables in a particular design. Thus, the current study utilized prototype meshes designed to evaluate each of these mesh parameters individually.
Methods: Five prototype meshes composed of planar, monofilament polyethylene terephthalate (PET) were evaluated in this study. The meshes were designed to focus on three key parameters, namely mesh density, pore size, and pore shape. The prototype meshes were implanted in the preperitoneal, retrorectus space in a porcine model of ventral incisional hernia repair, and tissue ingrowth characteristics were evaluated after 90 days. Mesh-tissue composite specimens were obtained from each repair site and evaluated via T-peel mechanical testing. Force-displacement data for each T-peel test were analyzed and five characteristics of tissue ingrowth reported: peak force (fp), critical force (fc), fracture energy (Γc), work (W), and work density (Wden). Hematoxylin and eosin (H&E) stained sections of explanted mesh-tissue composites were also assessed for characteristics of tissue response including cellular infiltration, cell types, inflammatory response, extracellular matrix deposition, neovascularization, and fibrosis, with a composite score assigned to represent overall tissue response.
Results: The medium-weight, very large pore, hexagonal (MWVLH) mesh performed significantly better than the light-weight, medium pore, diamond (LWMD) mesh for all parameters evaluated (fp, fc, Γc, W, Wden) and trended toward better results than the medium-weight, medium pore, diamond (MWMD) mesh for the majority of the parameters evaluated. When the data for the five meshes was grouped to evaluate mesh density, pore size, and pore shape, differences were more pronounced. No significant differences were observed with respect to mesh density, however significant improvement in mechanical strength of tissue ingrowth occurred as pore size increased from medium to very large. In addition, the hexagonal pores resulted in the strongest tissue ingrowth, followed by the square pores, and finally the diamond pores. Scores for several histological parameters were significantly different for these prototype meshes. For example, the MWVLH mesh showed significantly greater tissue ingrowth by neovascularization histological score than MWMD and MWVLS meshes (p<0.05) and significantly less fibrosis than LWMD and MWVLS meshes (p<0.05).
Conclusion: Pore shape and pore size significantly altered the mechanical strength of tissue ingrowth and host-site integration in a porcine model of ventral hernia repair, while mesh density had no effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2014.11.011 | DOI Listing |
Open Vet J
November 2024
Department of Basic Oral Medical Sciences, College of Dentistry, Qassim University, Buraydah, Saudi Arabia.
Background: Regenerative endodontics' primary objective is to establish a favorable environment in the root canal by removing infection, providing a sturdy scaffold, and sealing the apical end of the tooth tightly. These actions should promote pulp regeneration and root development.
Aim: This study evaluated histologically the regenerative potential of injectable hyaluronic acid (HA) hydrogel or collagen with blood clot as scaffolds during revascularization of immature necrotic dog's teeth.
Int J Nanomedicine
December 2024
Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
Purpose: Successful regeneration of cranial defects necessitates the use of porous bone fillers to facilitate cell proliferation and nutrient diffusion. Open porous microspheres, characterized by their high specific surface area and osteo-inductive properties, offer an optimal microenvironment for cell ingrowth and efficient ossification, potentially accelerating bone regeneration.
Materials And Methods: An in vitro investigation was conducted to assess the physicochemical properties, porosity, and biocompatibility of PHA-nano-clay open porous microspheres.
3D Print Addit Manuf
December 2024
Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
The utilization of bone scaffold implants represents a promising approach for repairing substantial bone defects. In recent years, various traditional scaffold structures have been developed and, with advances in materials biology and computer technology, novel scaffold designs are now being evaluated. This study investigated the effects of a novel scaffold unit cell design (Hexanoid) through a computational framework, comparing its performance to that of four well-known scaffold designs.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, and Pontificia Universidad Catolica Argentina, Buenos Aires, Argentina.
Atherosclerosis is the underlying factor in the premature death of millions of humans annually. The cause of death is often a result of the rupture of an atherosclerotic plaque followed by the discharge of the associated molecular debris into the vessel lumen which occludes the artery leading to ischemia of downstream tissue and to morbidity or mortality of the individual. This is most serious when it occurs in the heart (heart attack) or brain (stroke).
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil.
Purpose: One of the main causes of chronic wounds is diabetes mellitus (DM), a metabolic disease characterized by chronic hyperglycemia. In this context, hydrogels have been used as a promising treatment for stimulating tissue ingrowth and healing in these injuries. This systematic review aimed to evaluate the findings of studies that investigated the effects of injectable hydrogels of various origins on skin wound healing using in vivo experimental models in diabetic rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!