Molecular dynamics (MD) simulations of the charging of Li2MnO3 reveal that the reason nanocrystalline-Li2MnO3 is electrochemically active, in contrast to the parent bulk-Li2MnO3, is because in the nanomaterial the tunnels, in which the Li ions reside, are held apart by Mn ions, which act as a pseudo 'point defect scaffold'. The Li ions are then able to diffuse, via a vacancy driven mechanism, throughout the nanomaterial in all spatial dimensions while the 'Mn defect scaffold' maintains the structural integrity of the layered structure during charging. Our findings reveal that oxides, which comprise cation disorder, can be potential candidates for electrodes in rechargeable Li-ion batteries. Moreover, we propose that the concept of a 'point defect scaffold' might manifest as a more general phenomenon, which can be exploited to engineer, for example, two or three-dimensional strain within a host material and can be fine-tuned to optimize properties, such as ionic conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr05551aDOI Listing

Publication Analysis

Top Keywords

defect scaffold'
16
'point defect
12
origin electrochemical
4
electrochemical activity
4
activity nano-li2mno3
4
nano-li2mno3 stabilization
4
stabilization 'point
4
defect
4
scaffold'
4
scaffold' molecular
4

Similar Publications

Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.

Tissue Eng Part A

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.

View Article and Find Full Text PDF

Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).

View Article and Find Full Text PDF

Advancements in GelMA bioactive hydrogels: Strategies for infection control and bone tissue regeneration.

Theranostics

January 2025

Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.

Infectious bone defects present a significant clinical challenge, characterized by infection, inflammation, and subsequent bone tissue destruction. Traditional treatments, including antibiotic therapy, surgical debridement, and bone grafting, often fail to address these defects effectively. However, recent advancements in biomaterials research have introduced innovative solutions for managing infectious bone defects.

View Article and Find Full Text PDF

The resection of bone tumors results in large bone defects with some residual tumor cells, and the treatment of this type of bone defect area often faces a dilemma, namely, the trade-off between bone repair and antitumor after the resection of bone tumors. In order to promote local bone repair, and at the same time inhibit tumor recurrence by continuous and controlled drug administration, we developed a multifunctional NIR-responsive scaffold, whose main components are polylactic acid and MXene, and loaded with PLGA/DOX microspheres, and we hope that the scaffold can take into account both antitumor and bone repair in the bidirectional modulation effect of NIR. The results showed that the scaffold with 1% MXene content had relatively good performance in photothermal therapy (PT) and other aspects, and it could be smoothly increased to 50 °C within 2 min under NIR illumination, and the drug release of microspheres was increased by 10% after illumination compared with that at body temperature.

View Article and Find Full Text PDF

The aim was to explore the efficiency of Tideglusib in bone tissue healing by carrying it with different scaffolds on rat calvarial lesions. Twentyfour male Dawley rats were utilized. Two bone defects of 5 mm in diameter were formed (n = 8).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!