The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by single-molecule spectroscopy that the two SBDs intrinsically transit from open to closed ligand-free conformation, and the proteins capture their amino acid ligands via an induced-fit mechanism. High-affinity ligands elicit transitions without changing the closed-state lifetime, whereas low-affinity ligands dramatically shorten it. We show that SBDs in the closed state compete for docking onto the translocator, but remarkably the effect is strongest without ligand. We find that the rate-determining steps depend on the SBD and the amino acid transported. We conclude that the lifetime of the closed conformation controls both SBD docking to the translocator and substrate release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nsmb.2929 | DOI Listing |
Arch Microbiol
January 2025
Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India.
Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.
View Article and Find Full Text PDFMol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:
Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200 % in the secretion level and the volumetric activity.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India. Electronic address:
Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.
View Article and Find Full Text PDFBiomacromolecules
January 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, PR China.
Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!