Effects of hyperoxic exposure on signal transduction pathways in the lung.

Respir Physiol Neurobiol

Department of Neurosciences and Imaging, University of Chieti, Chieti, Italy. Electronic address:

Published: April 2015

Exposure to supraphysiological concentrations of oxygen is often applied in clinical practice to enhance oxygenation in acute or chronic lung injury. However, hyperoxic exposure is associated with increased reactive oxygen species production, which can be toxic to pulmonary endothelial and alveolar epithelial cells. Oxidative stress activates the pathways of the mitogen-activated protein kinases family: extracellular signal-regulated kinase (ERK1/2), C-Jun-terminal protein kinase (JNK1/2), and p38 kinase. Several studies have suggested that ERK activation in lung cells has a protective effect in response to hyperoxia, through stimulation of DNA repair and antioxidant mechanisms, and prolonged cell survival. Conversely, JNK1/2 and p38 kinase have been most frequently reported to have roles in induction of apoptotic responses. Moreover, exogenous factors, such as ATP, retinoic acid, substance P, thioredoxin, inosine and laminin, can have cytoprotective effects against hyperoxia-induced cell damage, through promotion of ERK activation and/or limiting JNK and p38 involvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2014.12.002DOI Listing

Publication Analysis

Top Keywords

hyperoxic exposure
8
jnk1/2 p38
8
p38 kinase
8
erk activation
8
effects hyperoxic
4
exposure signal
4
signal transduction
4
transduction pathways
4
pathways lung
4
lung exposure
4

Similar Publications

Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery.

View Article and Find Full Text PDF

Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.

J Appl Physiol (1985)

December 2024

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.

Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP.

View Article and Find Full Text PDF

Introduction: A 54-year-old, previously healthy Caucasian male diver was on a 22-day liveaboard diving holiday. During this time, he performed 75 open-circuit dives, of which 72 were with enriched air nitrox. All dives were within recreational length and depth.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 alleviates lung endothelial cells injury by inhibition of ferroptosis.

Transl Pediatr

November 2024

Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Background: In recent years, the survival rate of preterm infants has significantly improved due to the application of pulmonary surfactant (PS) and advancements in lung-protective mechanical ventilation strategies. However, this has been accompanied by an increased incidence of complications, particularly lung diseases triggered by elevated reactive oxygen species (ROS) induced by hyperoxia. The primary mechanism of hyperoxic lung injury (HLI) involves the excessive production of ROS within cells and the aggregation of inflammatory cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!