Fe/S biosynthesis is controlled in Escherichia coli by two machineries, the housekeeping ISC machinery and the SUF system that is functional under stress conditions. Despite many in vivo studies showing that SUF is more adapted for Fe/S assembly under stress, no molecular data supporting this concept have been provided so far. This work focuses on molecular studies of key actors in Fe/S assembly, the SufB and IscU scaffolds under oxidative stress and iron limitation. We show that the IscU Fe2S2 cluster is less stable than the SufB Fe2S2 cluster in the presence of hydrogen peroxide, oxygen, and an iron chelator.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi5012496DOI Listing

Publication Analysis

Top Keywords

fe/s assembly
8
fe2s2 cluster
8
molecular investigation
4
investigation iron-sulfur
4
iron-sulfur cluster
4
cluster assembly
4
assembly scaffolds
4
stress
4
scaffolds stress
4
stress fe/s
4

Similar Publications

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome.

J Biol Chem

December 2024

Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany. Electronic address:

Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits.

View Article and Find Full Text PDF

Multiple factors regulate the expression of in .

Front Cell Infect Microbiol

December 2024

Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.

Introduction: The gene cluster, encoding the sole iron-sulfur (Fe-S) cluster assembly system in , was recently shown to be up-regulated in response to oxidative stressors and Fe limitation.

Methods: In this study, luciferase reporter fusion assays, electrophoretic gel mobility shift assays (EMSA) and transcription assays (IVT) were used to dissect the and acting factors that regulate the expression of .

Results And Discussion: Results showed deletion of , for the only Fur-family transcriptional regulator in , resulted in >5-fold increases in luciferase activity under the control of the promoter (P<0.

View Article and Find Full Text PDF

Iron-based nanozymes, recognized for their biocompatibility and peroxidase-like activities, hold promise as catalysts in tumor therapy. However, their concurrent catalase-like activity undermines therapeutic efficacy by converting hydrogen peroxide in tumor tissues into oxygen, thus diminishing hydroxyl radical production. Addressing this challenge, this study introduces the hemin-cysteine-Fe (HCFe) nanozyme, which exhibits exclusive peroxidase-like activity.

View Article and Find Full Text PDF
Article Synopsis
  • * Most proteins in the cristae membrane are made in the nucleus, and they need to cross crista junctions to function properly, assisted by the mitochondrial protein import system.
  • * The study identifies a protein called Mar26 that plays a key role in the assembly of the cytochrome bc complex (complex III) by connecting assembly intermediates to a structure called MICOS, which helps coordinate the assembly and stability of respiratory chain components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!