Hypertrophic growth of cardiomyocytes in response to pressure overload is an important stage during the development of many cardiac diseases. Ca(2+) overload as well as subsequent activation of Ca(2+) signaling pathways has been reported to induce cardiac hypertrophy. Myocardin, a transcription cofactor of serum response factor (SRF), is a key transducer of hypertrophic signals. However, the direct role of myocardin in Ca(2+) signal-induced cardiomyocyte hypertrophy has not been explained clearly. In the present study, we discovered that embryonic rat heart-derived H9c2 cells responded to the stimulation of calcium ionophore A23187 with a cell surface area enlargement and an increased expression of cardiac hypertrophy marker genes. Increased Ca(2+) also induces an organization of sarcomeres in neonatal rat cardiomyocytes, as revealed by α-actinin staining. Increased Ca(2+) could upregulate the expression of myocardin. Knockdown of myocardin by shRNA attenuates hypertrophic responses triggered by increased intracellular Ca(2+), suggesting that Ca(2+) signals induce cardiomyocyte hypertrophy partly through activation of myocardin. Furthermore, A23187 treatment directly activates myocardin promoter, chelation of Ca(2+) by EGTA inhibits this activation and knockdown of myocardin expression using shRNA also abrogates A23187-induced ANF and SK-α-actin promoter activity. CSA (calcineurin inhibitor) and KN93 (CaMKII inhibitor) inhibit A23187-induced the increase in myocardin expression. These results suggest that myocardin plays a critical role in Ca(2+) signal-induced cardiomyocyte hypertrophy, which may serve as a novel mechanism that is important for cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.12.007 | DOI Listing |
Diets influence metabolism and disease susceptibility, with lysine acetyltransferases (KATs) serving as key regulators through acetyl-CoA. We have previously demonstrated that a ketogenic diet alleviates cardiac pathology, though the underlying mechanisms remain largely unknown. Here we show that KAT6A acetylation is crucial for mitochondrial function and cell growth.
View Article and Find Full Text PDFiScience
January 2025
Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.
View Article and Find Full Text PDFPhytomedicine
January 2025
The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guiyang City and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guizhou Medical University, No.6 Ankang Avenue, Guiyang City and Guian New District, Guizhou 561113, China; The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang City and Guian New District, Guizhou 561113, China. Electronic address:
Background: Cardiac hypertrophy is a prevalent early pathological manifestation in various cardiovascular diseases, lacking effective interventions to impede its progression. Although oxymatrine (OMT) has shown potential benefits for cardiac function, its therapeutic efficacy and mechanism in cardiac hypertrophy remain incompletely understood. Notably, mitochondrial damage and dysregulated autophagy are pivotal pathogenic mechanisms in cardiac hypertrophy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Jiangsu, Suzhou, 215000, China.
Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!