Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Charge-carrier generation and transport within PbS quantum dot (QD) solar cells is investigated by measuring the temperature-dependent steady-state photoluminescence (PL) concurrently during in situ current-voltage characterization. We first compare the temperature-dependent PL quenching for PbS QD films where the PbS QDs retain their original oleate ligand to that of PbS QDs treated with 1,2-ethanedithiol (EDT), producing a conductive QD layer, either on top of glass or on a ZnO nanocrystal film. We then measure and analyze the temperature-dependent PL in a completed QD-PV architecture with the structure Al/MoO3/EDT-PbS/ZnO/ITO/glass, collecting the PL and the current simultaneously. We find that at low temperatures excitons diffuse to the ZnO interface, where PL is quenched via interfacial charge transfer. At high temperatures, excitons dissociate in the bulk of the PbS QD film via phonon-assisted tunneling to nearby QDs, and that dissociation is in competition with the intrinsic radiative and nonradiative rates of the individual QDs. The activation energy for exciton dissociation in the QD-PV devices is found to be ∼40 meV, which is considerably lower than that of the electrodeless samples, and suggests unique interactions between injected and photogenerated carriers in devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn506075s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!