An understanding of the factors influencing the thermal stability of ultrathin carbon overcoats (COCs) is crucial for their application in heat-assisted magnetic recording (HAMR) at densities ≥ 1 Tb/in(2). Two types of non-hydrogenated ultrathin (∼1.5 nm) COCs were investigated after being subjected to laser-induced localized heating (at temperatures > 700 K) as envisaged in HAMR. Filtered cathodic vacuum arc (FCVA)-processed carbon with tuned C(+) ion energies of 350 eV followed by 90 eV provides significantly higher sp(3) C-C hybridization than magnetron sputter deposition even at very low thicknesses of ∼1.5 nm. As a result, the FCVA-deposited ultrathin carbon overcoats displayed excellent thermal stability along with improved wear and corrosion resistance. On the other hand, the sputtered carbon exhibited carbon loss and topographical and structural changes after laser irradiation owing to lower sp(3) hybridization. Therefore, this study highlights the pivotal role of carbon microstructure, primarily sp(3) hybridization, in non-hydrogenated carbon overcoats to maintain excellent thermal stability during the recurring high-temperature cycles in a HAMR process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5054724DOI Listing

Publication Analysis

Top Keywords

thermal stability
12
role carbon
8
carbon microstructure
8
carbon overcoats
8
excellent thermal
8
sp3 hybridization
8
carbon
7
probing role
4
microstructure thermal
4
stability performance
4

Similar Publications

The supramolecular binding exclusively by H-bonds of SeO, MoO and WO ions to form nanojars of the formula [EO⊂{-Cu(μ-OH)(μ-pz)}] (; E = Se, Mo, W; = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO, MoO or WO entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, and .

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!