Nrf2 regulates ROS production by mitochondria and NADPH oxidase.

Biochim Biophys Acta

UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK. Electronic address:

Published: April 2015

Background: Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain.

Methods: Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD).

Results: We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1-Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production.

Conclusions: These observations suggest that the Keap1-Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase.

General Significance: Findings supports a key role of the Keap1-Nrf2 pathway in redox homeostasis within the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471129PMC
http://dx.doi.org/10.1016/j.bbagen.2014.11.021DOI Listing

Publication Analysis

Top Keywords

ros production
24
keap1-nrf2 pathway
12
cells tissues
8
nrf2
7
ros
7
production
6
nrf2 regulates
4
regulates ros
4
production mitochondria
4
mitochondria nadph
4

Similar Publications

Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.

View Article and Find Full Text PDF

Photosynthesis-Inspired NIR-Triggered Fe₃O₄@MoS₂ Core-Shell Nanozyme for Promoting MRSA-Infected Diabetic Wound Healing.

Adv Healthc Mater

January 2025

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.

View Article and Find Full Text PDF

Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.

View Article and Find Full Text PDF

Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L.

View Article and Find Full Text PDF

RALF proteins-a monitoring hub for regulating salinity tolerance in plants.

Front Plant Sci

January 2025

International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!