Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain.

Neurobiol Dis

Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand. Electronic address:

Published: February 2015

Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone labelling. In addition, valproic acid worked synergistically with Mg132 in elevating ubiquitin load and causing cell death. These findings highlight important pathological relationships linking a compromise in protein turnover with the histone changes observed in Alzheimer's disease post-mortem human brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2014.11.023DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
36
total histone
20
histone
17
histone levels
16
acetyl histone
16
disease brain
12
histone acetylation
12
alzheimer's
9
disease
9
post-mortem alzheimer's
8

Similar Publications

The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is associated with cognitive decline. Use of oral anticoagulant (OAC) medications offers a lower risk of dementia, but it is unclear whether differences exist between types of OAC agents.

Objective: This was a secondary analysis to explore whether the progression from normal cognition to mild cognitive impairment to dementia differs between adults with AF on warfarin versus non-vitamin K inhibitors medications (NOACs) using data extracted from the National Alzheimer's Coordinating Center clinical case series.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!