Expression, purification and crystallization of two endonuclease III enzymes from Deinococcus radiodurans.

Acta Crystallogr F Struct Biol Commun

Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France.

Published: December 2014

Endonuclease III is a bifunctional DNA glycosylase that removes a wide range of oxidized bases in DNA. Deinococcus radiodurans is an extreme radiation-resistant and desiccation-resistant bacterium and possesses three genes encoding endonuclease III enzymes in its genome: DR2438 (EndoIII-1), DR0289 (EndoIII-2) and DR0982 (EndoIII-3). Here, EndoIII-1 and an N-terminally truncated form of EndoIII-3 (EndoIII-3Δ76) have been expressed, purified and crystallized, and preliminary X-ray crystallographic analyses have been performed to 2.15 and 1.31 Å resolution, respectively. The EndoIII-1 crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 181.38, b = 38.56, c = 37.09 Å, β = 89.34° and one molecule per asymmetric unit. The EndoIII-3Δ76 crystals also belonged to the monoclinic space group C2, but with unit-cell parameters a = 91.47, b = 40.53, c = 72.47 Å, β = 102.53° and one molecule per asymmetric unit. The EndoIII-1 structure was determined by molecular replacement, while the truncated EndoIII-3Δ76 structure was determined by single-wavelength anomalous dispersion phasing. Refinement of the structures is in progress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259241PMC
http://dx.doi.org/10.1107/S2053230X14024935DOI Listing

Publication Analysis

Top Keywords

endonuclease iii
12
iii enzymes
8
deinococcus radiodurans
8
crystals belonged
8
belonged monoclinic
8
monoclinic space
8
space group
8
group unit-cell
8
unit-cell parameters
8
molecule asymmetric
8

Similar Publications

In 2001, two enzyme-encoding genes were recognized in the fruit fly . The genetic material, labeled and , encodes ribonuclease-type enzymes with slightly diverse target substrates. The human orthologue is .

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Function analysis of RNase III in response to oxidative stress in Synechocystis sp. PCC 6803.

Microbiol Res

March 2025

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Electronic address:

RNase III, a ubiquitously distributed endonuclease, plays an important role in RNA processing and functions as a global regulator of gene expression. In this study, we explored the role of RNase III in mediating the oxidative stress response in Synechocystis sp. PCC 6803.

View Article and Find Full Text PDF

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!