RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner.

Atherosclerosis

Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands. Electronic address:

Published: January 2015

Objective: Toll like receptor 4 (TLR4) plays a key role in inflammation and previously it was established that TLR4 deficiency attenuates atherosclerosis. RadioProtective 105 (RP105) is a structural homolog of TLR4 and an important regulator of TLR4 signaling, suggesting that RP105 may also be an important effector in atherosclerosis. We thus aimed to determine the role of RP105 in atherosclerotic lesion development using RP105 deficient mice on an atherosclerotic background.

Methods And Results: Atherosclerosis was induced in Western-type diet fed low density lipoprotein receptor deficient (LDLr(-/-)) and LDLr/RP105 double knockout (LDLr(-/-)/RP105(-/-)) mice by means of perivascular carotid artery collar placement. Lesion size was significantly reduced by 58% in LDLr(-/-)/RP105(-/-) mice, and moreover, plaque macrophage content was markedly reduced by 40%. In a model of acute peritonitis, monocyte influx was almost 3-fold reduced in LDLr(-/-)/RP105(-/-) mice (P = 0.001), while neutrophil influx remained unaltered, suggestive of an altered migratory capacity of monocytes upon deletion of RP105. Interestingly, in vitro stimulation of monocytes with LPS induced a downregulation of CCR2, a chemokine receptor crucially involved in monocyte influx to atherosclerotic lesions, which was more pronounced in LDLr(-/-)/RP105(-/-) monocytes as compared to LDLr(-/-) monocytes.

Conclusion: We here show that RP105 deficiency results in reduced early atherosclerotic plaque development with a marked decrease in lesional macrophage content, which may be due to disturbed migration of RP105 deficient monocytes resulting from CCR2 downregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2014.11.020DOI Listing

Publication Analysis

Top Keywords

monocyte influx
12
ldlr-/-/rp105-/- mice
12
rp105
8
rp105 deficiency
8
deficiency attenuates
8
rp105 deficient
8
macrophage content
8
attenuates early
4
atherosclerosis
4
early atherosclerosis
4

Similar Publications

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Sialyl Lewis Glycomimetics as E- and P-Selectin Antagonists Targeting Hyperinflammation.

ACS Med Chem Lett

January 2025

Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.

Inflammatory disorders, such as sepsis, pancreatitis, and severe COVID-19, often cause immune dysfunction and high mortality. These conditions trigger excessive immune cell influx, leading to cytokine storms, organ damage, and compensatory immune suppression that results in immunoparalysis, organ dysfunction, and reinfection. Controlled and reversible immunosuppression limiting immune cell recruitment to inflammation sites could reduce hyperinflammation and prevent immune exhaustion.

View Article and Find Full Text PDF

Purpose: To ascertain the homing of monocytes and neutrophils in the epithelium versus stroma of HSV-1 infected corneas at different stages of infection and functional significance of their anatomical location in virus-infected corneas.

Methods: The corneas of C57BL/6J mice were infected with HSV-1 McKrae. Mice were euthanized on different days post-infection.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Aromadendrin (ARO) is an active plant compound that exerts anti-inflammatory effects. However, its ameliorative effects on chronic obstructive pulmonary disease (COPD) remain unclear. Therefore, we investigated the inhibitory effects of ARO on bronchial inflammation using an experimental model of COPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!