AI Article Synopsis

  • PASylation uses a genetically engineered amino acid chain to increase the size of antibody fragments, improving their circulation half-life.
  • Studies on humanized αHER2 and αCD20 antibody fragments indicated that their ability to bind to targets remained intact after PASylation.
  • Enhanced tumor uptake and improved imaging contrast were observed in PET studies, demonstrating that PASylation significantly boosts the effectiveness of these antibody fragments in tumor targeting.

Article Abstract

Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622060PMC
http://dx.doi.org/10.4161/19420862.2014.985522DOI Listing

Publication Analysis

Top Keywords

αcd20 fabs
12
biodistribution analysis
12
αher2 αcd20
8
pet imaging
8
imaging biodistribution
8
tumor-to-blood ratios
8
αher2 fab-pas100
8
fab-pas100 fab-pas200
8
fabs
7
tumor
6

Similar Publications

Synthetic anti-RNA antibody derivatives for RNA visualization in mammalian cells.

Nucleic Acids Res

December 2024

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody-GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells.

View Article and Find Full Text PDF

Monoclonal antibodies recognizing nonprotein antigens remain largely underrepresented in our understanding of the molecular repertoire of innate and adaptive immunity. One such antibody is Mannitou, a murine IgM that recognizes paucimannosidic glycans. In this work, we report the production and purification of the recombinant antigen-binding fragment (Fab) of Mannitou IgM (Mannitou Fab) and employ a combination of biochemical and biophysical approaches to obtain its initial structural characterization.

View Article and Find Full Text PDF

Clinical Scenario: Individuals with patellofemoral pain (PFP) present with a variety of neuromuscular and psychological deficits, with the "gold-standard" for treatment being rehabilitation programs with strengthening-based exercises. While such interventions primarily target pain and function measures, it is unknown whether psychological measures such as fear-avoidance beliefs (FABs) are also affected.

Clinical Question: Is rehabilitation including strengthening exercises effective in improving FABs in individuals with PFP?

Summary Of Key Findings: Three studies met the inclusion criteria and were included in the appraisal.

View Article and Find Full Text PDF

Structural basis of different neutralization capabilities of monoclonal antibodies against H7N9 virus.

J Virol

December 2024

State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.

Neutralizing antibodies (nAbs) are important for the treatment of emerging viral diseases and for effective vaccine development. In this study, we generated and evaluated three nAbs (1H9, 2D7, and C4H4) against H7N9 influenza viruses and found that they differ in their ability to inhibit viral attachment, membrane fusion, and egress. We resolved the cryo-electron microscopy (cryo-EM) structures of H7N9 hemagglutinin (HA) alone and in complex with the nAb antigen-binding fragments (Fabs) and identified the HA head-located epitope for each nAb, thereby revealing the molecular basis and key residues that determine the differences in these nAbs in neutralizing H7N9 viruses.

View Article and Find Full Text PDF

Development of a novel capture step for purification of antigen binding fragments (Fabs).

Protein Expr Purif

March 2025

Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India. Electronic address:

Antigen binding fragments (Fabs) are an emerging class of biotherapeutics, widely accepted as an alternative to the traditional monoclonal antibodies (mAbs). The small size of the Fabs offers better tissue penetrability and lack of Fc region, thereby resulting in reduced side effects. However, since Fab molecules lack Fc region, Protein A chromatography (the ubiquitous capture step in mAb platforms) cannot be employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!