Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+ /H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.3062 | DOI Listing |
Chem Asian J
January 2025
Keio University Faculty of Science and Technology Graduate School of Science and Technology: Keio Gijuku Daigaku Rikogakubu Daigakuin Rikogaku Kenkyuka, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, 2238522, Yokohama, JAPAN.
For the development of new functional materials for various applications, such as drug or gene delivery and environmental remediation, the relationship between function and morphology has been considered an important aspect for controlling affinity to the targets. However, there are only a few reports on this relationship because the molecular strategy for the precise control of vesicle shape has been restricted. Herein, we report the photocontrol of vesicle shape using azobenzene-containing amphiphilic switches.
View Article and Find Full Text PDFBackground: Cognitive resilience (CR) refers to the continuum from worse to better-than-expected cognition, given the degree of neuropathology. Understanding mechanisms underlying CR could inform discovery of novel targets for dementia prevention; however, specific metabolic pathways underlying CR are yet to be elucidated.
Methods: Our study included 484 deceased participants (mean age at death =91 years, 70.
Alzheimers Dement
December 2024
Qingdao Municipal hospital, Qingdao university, Qingdao, Shandong, China.
Background: Plasma sphingolipids were discovered to identify memory impairment and Alzheimer's disease (AD) risk. It has been reported to play a role in the pathological processes of neurodegeneration and neuroinflammation; however, its exact mechanism in AD has not yet been completely found.
Method: A total of 476 non-demented participants from Alzheimer's Disease Neuroimaging Initiative were included.
Alzheimers Dement
December 2024
Stanford University, School of Medicine, Stanford, CA, USA.
Background: Alzheimer's disease (AD) is the most common form of dementia. Neuropathologically, AD stands out as a mixed proteinopathy. Beta-amyloid and tau biomarkers can now add in-vivo support to the AD diagnosis.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!