Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.

Colloids Surf B Biointerfaces

Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address:

Published: January 2015

Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.11.031DOI Listing

Publication Analysis

Top Keywords

cross-linked fibers
20
dual cross-linked
16
citric acid
12
fibers
11
chitosan fibers
8
regeneration rabbit
8
rabbit model
8
acid bath
8
cross-linked
8
ionotropically cross-linked
8

Similar Publications

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.

View Article and Find Full Text PDF

Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size effects.

Angew Chem Int Ed Engl

December 2024

Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.

View Article and Find Full Text PDF

Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System.

ACS Biomater Sci Eng

December 2024

Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903-1738 United States.

The current lack of therapeutic approaches to demyelinating disorders and injuries stems from a lack of knowledge surrounding the underlying mechanisms of myelination. This knowledge gap motivates the development of effective models to study the role of environmental cues in oligodendrocyte progenitor cell (OPC) maturation. Such models should focus on determining, which factors influence OPCs to proliferate and differentiate into mature myelinating oligodendrocytes (OLs).

View Article and Find Full Text PDF

Lignin-based hyper-cross-linked resin as an adsorbent for aniline from aqueous solution.

Int J Biol Macromol

December 2024

College of Chemistry and Materials, Huaihua University, Huaihua 418000, PR China; Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Materia, Huaihua University, Huaihua 418000, PR China. Electronic address:

Lignin serves as an ideal substrate for the synthesis of chemically functionalized hyper-cross-linked resins due to the structural composition of its aromatic rings, aliphatic side chains, and multiple active functional groups. These resins have shown to be highly effective in the adsorption of aromatic compounds. In this study, hyper-cross-linked polymer (HCPs-3), synthesized using 1,3,5-triphenyl and lignin, demonstrated a significant adsorption capacity for aniline, with a maximum adsorption capacity (q) of 189.

View Article and Find Full Text PDF

A Novel Polymer Film to Develop Heart Valve Prostheses.

Polymers (Basel)

November 2024

Icon Lab Gmbh Ltd., 1 Barrikad St., Nizhny Novgorod 603003, Russia.

Polymer heart valves are a promising alternative to bioprostheses, the use of which is limited by the risks of calcific deterioration of devitalized preserved animal tissues. This is especially relevant in connection with the increasingly widespread use of transcatheter valves. Advances in modern organic chemistry provide a wide range of polymers that can replace biological material in the production of valve prostheses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!