One of the most important discoveries in the field of microbiology in the last two decades is that bacterial cells have intricate subcellular organization. This understanding has emerged mainly from the depiction of spatial and temporal organization of proteins in specific domains within bacterial cells, e.g., midcell, cell poles, membrane and periplasm. Because translation of bacterial RNA molecules was considered to be strictly coupled to their synthesis, they were not thought to specifically localize to regions outside the nucleoid. However, the increasing interest in RNAs, including non-coding RNAs, encouraged researchers to explore the spatial and temporal localization of RNAs in bacteria. The recent technological improvements in the field of fluorescence microscopy allowed subcellular imaging of RNAs even in the tiny bacterial cells. It has been reported by several groups, including ours that transcripts may specifically localize in such cells. Here we review what is known about localization of RNA and of the pathways that determine RNA fate in bacteria, and discuss the possible cues and mechanisms underlying these distribution patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615583PMC
http://dx.doi.org/10.4161/rna.36135DOI Listing

Publication Analysis

Top Keywords

bacterial cells
12
spatial temporal
8
rna
4
rna localization
4
localization bacteria
4
bacteria discoveries
4
discoveries field
4
field microbiology
4
microbiology decades
4
bacterial
4

Similar Publications

Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures.

View Article and Find Full Text PDF

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.

View Article and Find Full Text PDF

The bovine uterus is susceptible to bacterial infections after calving, particularly from (), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by in Bovine Mammary Epithelial Cells.

Vet Sci

November 2024

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.

() is a significant pathogen associated with clinical mastitis in cattle. Anti-inflammatory drugs are necessary to alleviate pain and inflammation during clinical mastitis. Among many drugs, meloxicam (MEL) has been widely used in clinical mastitis because of its excellent inhibitory effect on the cyclooxygenase-2 (COX-2) enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!